Citation: NG Liang-Fa, WU Xin-Min, LI Wei, QI Chuan-Song. Stability and Aromaticity of XB6+ (X=C, Si, Ge, Sn, Pb) Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 831-836. doi: 10.3866/PKU.WHXB20110412 shu

Stability and Aromaticity of XB6+ (X=C, Si, Ge, Sn, Pb) Clusters

  • Received Date: 29 December 2010
    Available Online: 3 March 2011

  • The geometries, stability and chemical bonding of XB6+(X=C, Si, Ge, Sn, Pb) clusters were investigated using ab initio (MP2) and density functional theory (DFT: B3LYP and B3PW91) methods. Analytical gradients with polarized split-valence basis sets (6-311+G(d)) were used for B, C, Si, and Ge. The relativistic effective core potential with the LANL2DZ basis sets were chosen for Sn and Pb. The results show that the Cs symmetric pseudo-planar XB6+(X=C, Si, Ge, Sn, Pb) structures are the global minima on the potential energy surfaces, which are more stable than the C6v symmetric pyramidal and C2 symmetric quasi-pyramidal structures. We carried out a natural bond orbital (NBO) analysis of all these minima at the B3LYP level, and calculated and discussed the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps, the molecular orbitals (MO), and the nucleus-independent chemical shifts (NICS) of the most stable structure. The nature of the X―B and B=B bonds in these minimum structures and the aromatic characteristics (σ and π) of the most stable configuration were analyzed at the B3LYP level.

  • 加载中
    1. [1]

      (1) Aihara, J.; Kanno, H.; Ishida, T. J. Am. Chem. Soc. 2005, 127, 13324.

    2. [2]

      (2) Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. J. Am. Chem. Soc. 2005, 127, 4998.

    3. [3]

      (3) Boldyrev, A. I.; Li, X.; Wang, L. S. Angew. Chem. Int. Edit. 2000, 39, 3307.

    4. [4]

      (4) Boldyrev, A. I.; Wang, L. S. Chem. Rev. 2005, 105, 3716.

    5. [5]

      (5) Chen, Z. F.; King, R. B. Chem. Rev. 2005, 105, 3613.

    6. [6]

      (6) Lu, X.; Chen, Z. F. Chem. Rev. 2005, 105, 3643.

    7. [7]

      (7) Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Coord. Chem. Rev. 2006, 250, 2811.

    8. [8]

      (8) Alexaandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. J. Phys. Chem. A 2003, 107, 9319.

    9. [9]

      (9) Jin, H. W.; Li, Q. S. Phys. Chem. Chem. Phys., 2003, 5, 1110.

    10. [10]

      (10) Jin, H. W.; Li, Q. S. J. Phys. Chem. A 2002, 106, 7042.

    11. [11]

      (11) Zhai, H. J.; Wang, L. S.; Alexaandrova, A. N.; Boldyrev, A. I.; Steiner, E.; Fowler, P. W. J. Chem. Phys. 2002, 117, 7917.

    12. [12]

      (12) Alexaandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. J. Phys. Chem. A 2003, 107, 1359.

    13. [13]

      (13) Ma, J.; Li, Z. H.; Fan, K. N.; Zhou, M. F. Chem. Phys. Lett. 2003, 372, 708.

    14. [14]

      (14) Li, Q. S.; Jin, Q.; Luo, Q. J. Int. Quantum Chem. 2003, 94, 269.

    15. [15]

      (15) Li, Q. S.; Jin, Q. J. Phys. Chem. A 2004, 108, 855.

    16. [16]

      (16) Li, Q. S.; Jin, Q. J. Phys. Chem. A 2003, 107, 7869.

    17. [17]

      (17) Zhai, H. J.; Wang, L. S.; Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2006, 110, 1689.

    18. [18]

      (18) Feng, X. J.; Luo, Y. H. J. Phys. Chem. A 2007, 111, 2420.

    19. [19]

      (19) Exner, K.; Schleyer, P. V. R. Science 2000, 290, 1937.

    20. [20]

      (20) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

    21. [21]

      (21) Cheng, Y. H.; Zhao, X.; Song, K. S.; Liu, L.; Guo, Q. X. J. Org. Chem. 2002, 67, 6638.

    22. [22]

      (22) Carpenter, J. E.; Weinhold, F. J. Mol. Struct. -Theochem 1988, 169, 41.

    23. [23]

      (23) ldfuss, B.; Schleyer, P.v.R.; Hampel, F. Organometallics 1996, 15, 1755.

    24. [24]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, 2004

    25. [25]

      (25) Li, Q. S.; ng, L. F.; Gao, Z. M. Chem. Phys. Lett. 2004, 390, 220.

    26. [26]

      (26) Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. J. Phys. Chem. A 2004, 108, 3509.

    27. [27]

      (27) Kato, H.; Yamashita, K.; Morokuma, K. Chem. Phys. Lett 1992, 190, 361.

    28. [28]

      (28) Periodic Table of Elements; Wiley-VCH: Weinheim, Germany, 1997.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

Metrics
  • PDF Downloads(1239)
  • Abstract views(2933)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return