Citation: NING Shen, SHEN Jing, LI Xing-Long, XU Yong, LI Quan-Xin. Characterization and Anion Emission Characteristics of the Microporous Crystal Cs-C12A7[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 983-989. doi: 10.3866/PKU.WHXB20110410 shu

Characterization and Anion Emission Characteristics of the Microporous Crystal Cs-C12A7

  • Received Date: 26 November 2010
    Available Online: 2 March 2011

    Fund Project: 国家自然科学基金(50772107) (50772107) 国家重点基础研究发展规划(973)(2007CB210206) (973)(2007CB210206)国家高技术研究发展计划(863)(2009AA05Z435)资助项目 (863)(2009AA05Z435)

  • Cesium-12CaO·7Al2O3 (Cs-C12A7) was fabricated by adding CsI to the C12A7 surface using incipient wetness impregnation. The X-ray diffraction (XRD) structure determined for the Cs-C12A7 material is the same as that of the 12CaO·7Al2O3 (C12A7) crystal, which belongs to the I43d] space group. The concentrations of O- and O2- in Cs-C12A7 were about (1.3±0.3)×1020 cm-3 and (1.2±0.2)×1020 cm-3, respectively, according to a simulation of the measured electron paramagnetic resonance (EPR) spectrum. This is similar to the data obtained for fresh C12A7 ([O-]=(1.4±0.3)×1020 cm-3 and [O2-]=(1.4±0.3)×1020 cm-3). The CsI particles from the C12A7 surface were observed using field emission scanning electron microscope (FESEM) and conventional transmission electron microscopy (TEM). The emission features of Cs-C12A7, including the emission distribution, field effect and apparent activation energy were investigated in detail and compared with those of C12A7. The advanced emission behavior was attributed to a reduction in the apparent activation energy.

  • 加载中
    1. [1]

      (1) Lee, J.; Grabowski, J. J. Chem. Rev. 1992, 92, 1611.

    2. [2]

      (2) Fan, L.; Song, J.; Hildebrand, P. D.; Forney, C. F. J. Appl. Microb. 2002, 93, 144.

    3. [3]

      (3) Shibayama, T.; Shindo, H.; Horiike, Y. Plasma Sources Sci. Technol. 1996, 5, 254.

    4. [4]

      (4) Shindo, H.; Sawa, Y.; Horiike, Y. Jpn. J. Appl. Phys. 1995, 34, L925.

    5. [5]

      (5) Booth, J. P.; Corr, C. S.; Curley, G. A.; Jolly, J.; Guillon, J.; Földes, T. Appl. Phys. Lett. 2006, 88, 151502.

    6. [6]

      (6) Ishikawa, J. Rev. Sci. Instrum. 2000, 71, 1036.

    7. [7]

      (7) Li, Q. X.; Torimoto, Y.; Sadakata, M. Negative charged oxygen atomic generator. Patent WO115913, 2005.

    8. [8]

      (8) Li, Q. X.; Torimoto, Y.; Sadakata, M. Negative charged oxygen atomic generator. Japan Patent JP160374, 2004.

    9. [9]

      (9) Li, Q. X.; Hayashi, K.; Nishioka, M.; Kashiwagi, H.; Hirano, M.; Torimoto, Y.; Hosono, H.; Sadakata, M. Appl. Phys. Lett. 2002, 80, 4259.

    10. [10]

      (10) Li, Q. X.; Hosono, H.; Hirano, M.; Hayashi, K.; Nishioka, M.; Kashiwagi, H.; Torimoto, Y.; Sadakata, M. Surf. Sci. 2003, 527, 100.

    11. [11]

      (11) Li, J.; Huang, F.; Wang, L.; Yu, S. Q.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Chem. Mater. 2005, 17, 2771.

    12. [12]

      (12) Li, J.; Huang, F.; Wang, L.; Wang, Z. X.; Yu, S. Q.; Torimoto, Y.; Sadakata, M.; Li, Q. X. J. Phys. Chem. B 2005, 109, 14599.

    13. [13]

      (13) Huang, F.; Li, J.; Xian, H.; Tu, J.; Sun, J. Q.; Yu, S. Q.; Li, Q. X.; Torimoto, Y.; Sadakata, M. Appl. Phys. Lett. 2005, 86, 114101.

    14. [14]

      (14) Huang, F.; Li, J.; Wang, L.; Dong, T.; Tu, J.; Torimoto, Y.; Sadakata, M.; Li, Q. X. J. Phys. Chem. B 2005, 109, 12032.

    15. [15]

      (15) Song, C. F.; Sun, J. Q.; Qiu, S. B.; Yuan, L. X.; Tu, J.; Torimoto. Y.; Sadakata, M.; Li, Q. X. Chem. Mater. 2008, 20, 3473.

    16. [16]

      (16) Song, C. F.; Sun, J. Q.; Li, J.; Ning, S.; Yamamoto, M.; Tu, J.; Torimoto, Y.; Li, Q. X. J. Phys. Chem. C 2008, 112, 19061.

    17. [17]

      (17) Sun, J. Q.; Song, C. F.; Ning, S.; Lin, S. B.; Li, Q. X. Acta Phys. -Chim. Sin. 2009, 25, 1713.

    18. [18]

      [孙剑秋, 宋崇富, 宁 珅, 林少斌, 李全新. 物理化学学报, 2009, 25, 1713.]

    19. [19]

      (18) Sun, J. Q.; ng, L.; Shen, J.; Lin, Z.; Li, Q. X. Acta Phys. -Chim. Sin. 2010, 26, 795.

    20. [20]

      [孙剑秋, 宫 璐, 沈 静, 林 舟, 李全新. 物理化学学报, 2010, 26, 795.]

    21. [21]

      (19) Hayashi, K.; Hirano, M.; Matsuishi, S.; Hosono, H. J. Am. Chem. Soc. 2002, 124, 738.

    22. [22]

      (20) Bartl, H. B.; Scheller, T. Neues Jahrb Mineral Monatsh 1970, 35, 547.

    23. [23]

      (21) Dong, T.; Li, J.; Huang, F.; Wang, L.; Tu, J.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Chem. Commun. 2005, No.21, 2724.

    24. [24]

      (22) Gao, A. M.; Zhu, X. F.; Wang, H. J.; Tu, J.; Lin, P. Y.; Torimoto, Y.; Sadakata, M.; Li, Q. X. J. Phys. Chem. B 2006, 110, 11854.

    25. [25]

      (23) Wang, L.; ng, L.; Zhao, E.; Yu, Z.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Lett. Appl. Microbiol. 2007, 45, 200.

    26. [26]

      (24) Wang, Z. X.; Pan, Y.; Dong, T.; Zhu, X. F.; Kan, T.; Yuan, L. X.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Appl. Catal. A 2007, 320, 24.

    27. [27]

      (25) Li, L. C.; Wang, L.; Yu, Z.; Lv, X. Z.; Li, Q. X. Plas. Sci. Technol. 2007, 9, 119.

    28. [28]

      (26) Dong, T.; Wang, Z. X.; Yuan, L. X.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Catal. Lett. 2007, 119, 29.

    29. [29]

      (27) Wang, Z. X.; Dong, T.; Yuan, L. X.; Kan, T.; Zhu, X. F.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Energy Fuels 2007, 21, 2421.

    30. [30]

      (28) Jeevaratnam, J.; Glasser, F. P.; Glasser, L. S. D. J. Am. Ceram. Soc. 1964, 47, 105.

    31. [31]

      (29) Lide, D. R. Handbook of Chemistry and Physics, 84th ed.; CRC Press: New York, 2003-2004; pp1537, pp2070.

    32. [32]

      (30) Simons, D. G.; Fraser, G. W.; De Korte, P. A. J.; Pearson, J. F.; De Jong, L. Nuclear Instruments and Methods in Physics Research A 1987, 261, 579.

    33. [33]

      (31) Whiteley, M. J.; Pearson, J. F.; Fraser, G. W.; Barstow, M. A. Nuclear Instruments and Methods in Physics Research 1984, 224, 287.

    34. [34]

      (32) Truman, A.; Bird, A. J.; Ramsden, D.; He, Z. Nuclear Instruments and Methods in Physics Research A 1994, 353, 375.

    35. [35]

      (33) Gibrekhterman, A.; Akkerman, A.; Breskin, A.; Chechik, R. J. Appl. Phys. 1994, 76, 4656.

    36. [36]

      (34) Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Wang, Y. X.; Zorman, C. A.; Angus, J. C.; Hoffman, R. W.; Anderson, D. F. Appl. Phys. Lett. 1994, 65, 2702.

    37. [37]

      (35) Almeida, J.; Braem, A.; Breskin, A.; Buzulutskov, A.; Chechik, R.; Cohen, S.; Coluzzaa, C.; Confortoa, E.; Margaritondoa, G.; Nappid, E.; Paice, G.; Piuzb, F.; dell′Ortoa, T.; Scognettid, T.; S bbab, S.; Tonnerf, B. P. Nuclear Instruments and Methods in Physics Research A 1995, 367, 337.


  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(1160)
  • Abstract views(2307)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return