Citation: SONG Lei, YU Feng, WU Li-Xia, ZHOU Xiao-Guo, LIU Shi-Lin. Anionic Production Pathways Involved in the Reaction between OH- and CH2ClF[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 801-807. doi: 10.3866/PKU.WHXB20110409
-
The anionic production pathways involved in the reaction between hydroxide anion (OH-) and chlorofluoromethane (CH2ClF) were theoretically investigated. The optimized geometries of all the important species on the reaction potential energy surface were obtained at the B3LYP/6-31+G(d,p) and B3LYP/6-311++G(2d,p) levels. Consequently, harmonic vibrational frequencies and zero point energies (ZPEs) were calculated. Based on the relative energies of all the species that were calculated at the CCSD(T)/6-311+G(3df,3dp) level, the anionic production channels for the H+-abstraction and the bimolecular nucleophilic substitution (SN2) reaction processes are elaborated upon. According to the calculated barrier heights for the production pathways, the H+-abstraction channel is dominant, which agrees very well with previous experimental conclusions. In addition, non-typical anionic products are suggested to form during the SN2 reaction processes where the serious dynamic effect probably causes the SN2 reaction process to produce F-.
-
-
[1]
(1) Deckers, J.; van Tiggelen, A. Combust. Flame 1957, 1, 281.
-
[2]
(2) Lee, J.; Grabowski, J. J. Chem. Rev. 1992, 92, 1611.
-
[3]
(3) Fialkov, A. B. Prog. Energy Combust. Sci. 1997, 23, 399.
-
[4]
(4) Grabowski, J. J.; Melly, S. J. Int. J. Mass Spectrom. 1987, 81, 147.
-
[5]
(5) McFarland, M.; Albritton, D. L.; Fehsenfeld, F. C.; Ferguson, E. E.; Schmeltekopf, A. L. J. Chem. Phys. 1973, 59, 6610.
-
[6]
(6) Beauchamp, J. L. Annu. Rev. Phys. Chem. 1971, 22, 527.
-
[7]
(7) Futrell, J. H.; Miller, C. D. Rev. Sci. Instrum. 1966, 37, 1521.
-
[8]
(8) Adams, N. G.; Smith, D. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 349.
-
[9]
(9) Bilotta, R. M.; Preuninger, F. N.; Farrar, J. M. J. Chem. Phys. 1980, 73, 1637.
-
[10]
(10) Mayhew, C. A.; Peverall, R.; Timperley, C. M.; Watts, P. Int. J. Mass Spectrom. 2004, 233, 155.
-
[11]
(11) Solomon, S. Rev. Geophys. 1999, 37, 275.
-
[12]
(12) Rowland, F. S. Ambio 1990, 19, 281.
-
[13]
(13) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
-
[14]
(14) Bhatnagar, A.; Carr, R. W. Chem. Phys. Lett. 1996, 258, 651.
-
[15]
(15) Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L.; Guarnieri, A. J. Mol. Spectrosc. 1995, 174, 397.
-
[16]
(16) http://en.wikipedia.org/wiki/Montreal_Protocol (accessed May 4, 2010).
-
[17]
(17) Howle, C. R.; Mayhew, C. A.; Tuckett, R. P. J. Phys. Chem. A 2005, 109, 3626.
-
[18]
(18) Peverall, R.; Kennedy, R. A.; Mayhew, C. A.; Watts, P. Int. J. Mass Spectrom. 1997, 171, 51.
-
[19]
(19) Chiorboli, C.; Piazza, R.; Tosato, M. L.; Carassiti, V. Coord. Chem. Rev. 1993, 125, 241.
-
[20]
(20) Bottoni, A.; Poggi, G.; Emmi, S. S. J. Mol. Struct. -Theochem 1993, 279, 299.
-
[21]
(21) Tanner, S. D.; Mackay, G. I.; Bohme, D. K. Can. J. Chem. 1981, 59, 1615.
-
[22]
(22) Yang, X.; Zhang, X.; Castleman, A. W. J. Phys. Chem. 1991, 95, 8520.
-
[23]
(23) Yang, X.; Castleman, A. W. J. Am. Chem. Soc. 1991, 113, 6766.
-
[24]
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02, D.01, E.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[25]
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
[26]
(26) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
-
[27]
(27) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683.
-
[28]
(28) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
-
[29]
(29) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
-
[30]
(30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
-
[31]
(31) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
-
[32]
(32) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys. 1985, 83, 4041.
-
[33]
(33) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 7382.
-
[34]
(34) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.
-
[35]
(35) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999, 110, 7650.
-
[36]
(36) Yu, F.; Zhao, Y. G.; Wang, Y.; Zhou, X. G.; Liu, S. L. Acta Chim. Sin. 2007, 65, 899.
-
[37]
[于 锋, 赵英国, 王 勇, 周晓国, 刘世林. 化学学报, 2007, 65, 899.]
-
[38]
(37) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chim. Sin. 2008, 66, 2499.
-
[39]
[王新磊, 于 锋, 谢 丹, 刘世林, 周晓国. 化学学报, 2008, 66, 2499.]
-
[40]
(38) Wu, L. X.; Yu, F.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 82.
-
[41]
(39) Yu, F.; Wu, L. X.; Zhou, X. G.; Liu, S. L. Chin. J. Chem. Phys. 2010, 23, 643.
-
[42]
[于 锋,吴琍霞,周晓国,刘世林. 化学物理学报, 2010, 23, 643.]
-
[43]
(40) Borisov, Y. A.; Arcia, E. E.; Mielke, S. L.; Garrett, B. C.; Dunning, T. H. J. Phys. Chem. A 2001, 105, 7724.
-
[44]
(41) Lee, E. P. F.; Dyke, J. M.; Mayhew, C. A. J. Phys. Chem. A 1998, 102, 8349.
-
[45]
(42) Yu, F.; Wu, L. X.; Song, L.; Zhou, X. G.; Liu, S. L. J. Mol. Struct. -Theochem 2010, 958, 41.
-
[46]
(43) Yu, F.; Wu, L. X.; Liu, S. L.; Zhou, X. G. J. Mol. Struct. -Theochem 2010, 947, 1.
-
[47]
(44) Wu, L. X.; Yu, F.; Liu, J.; Dai, J. H.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2331.
-
[48]
[吴琍霞, 于 锋, 刘 静, 戴静华, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2331.]
-
[49]
(45) Sun, L.; Song, K.; Hase, W. L. Science 2002, 296, 875.
-
[50]
(46) Hase, W. L. Science 1994, 266, 998.
-
[1]
-
-
[1]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[7]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[8]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[11]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[12]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[18]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[19]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[20]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[1]
Metrics
- PDF Downloads(1081)
- Abstract views(2490)
- HTML views(9)