Citation: SU Ya-Ling, LI Yi, DU Ying-Xun, LEI Le-Cheng. Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 939-945. doi: 10.3866/PKU.WHXB20110401 shu

Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes

  • Received Date: 1 November 2010
    Available Online: 24 February 2011

    Fund Project: 河海大学水文水资源与水利工程科学国家重点实验室开放研究基金(2009490911)与国家自然科学青年基金(20906097)资助项目 (2009490911)与国家自然科学青年基金(20906097)

  • Improving the photocatalytic activity and the utilization of visible light of TiO2 is the most important research topics in the photocatalytic field. To improve the photocatalytic activity of TiO2, we used chemical vapor deposition (CVD) to dope TiO2 nanotubes with fluorine. Scanning electron microscopy (SEM) images showed that the annealing temperature significantly affected the morphological integrity of TiO2 nanotubes. Upon annealing at 550 and 700 °C, the structure of F-doped TiO2 nanotubes suffered from an observable disintegration of morphological integrity. X-ray diffraction (XRD) results indicated that the F impurity retarded the anatase-rutile phase transition. Fluorine was successfully doped into TiO2 by CVD, as indicated by the X-ray photoelectron spectroscopy (XPS) results. F-doped TiO2 nanotubes showed higher photocatalytic activity. First-principles calculations suggested that the F 2p states were located in the lower-energy range of valence band (VB) and less mixed with O 2p states. It thus contributed little to the reduction of the optical band gap. This is consistent with the finding that the band gap of F-doped TiO2 is very close to that of undoped TiO2. Therefore, the higher catalytic activity of F-doped TiO2 should be attributed to the creation of surface oxygen vacancies upon F-doping, which enhances surface acidity and increases the amount of Ti3+ ions.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. 2000, 1, 1.

    2. [2]

      (2) Linsebigler, A. L.; Lu, G. Q.; Yates, T., Jr. Chem. Rev. 1995, 95, 735.

    3. [3]

      (3) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

    4. [4]

      (4) Mokawa, T.; Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Jpn. J. Appl. Phys. 2001, 40, 561.

    5. [5]

      (5) Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.

    6. [6]

      (6) Khan, S. U. M.; Al-shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243.

    7. [7]

      (7) Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett. 1998, 32, 772.

    8. [8]

      (8) Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Chem. Lett. 2003, 32, 330.

    9. [9]

      (9) Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.

    10. [10]

      (10) Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J. Chem. Mater. 2005, 17, 1548.

    11. [11]

      (11) Song, S.; Tu, J. J.; Xu, L. J.; Xu, X.; He, Z. Q.; Qiu, J. P.; Ni, J. G.; Chen, J. M. Chemosphere 2008, 73, 1401.

    12. [12]

      (12) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.

    13. [13]

      (13) Li, D.; Haneda, H.; Hishita, S.; Kolodiazhnyi T.; Haneda, H. J. Solid State Chem. 2005, 178, 3293.

    14. [14]

      (14) Li, D.; Haneda, H.; Hishita, S.; Ohashi,N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.

    15. [15]

      (15) Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Patrik, L. J. Photochem. Photobiol. A 2006, 184, 282.

    16. [16]

      (16) Tang, J.; Quan, H.; Ye, J. Chem. Mater. 2007, 19, 116.

    17. [17]

      (17) Varghese, O. K.; ng, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.

    18. [18]

      (18) Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Environ. Sci. Technol. 2005, 39, 3770.

    19. [19]

      (19) Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9, 947.

    20. [20]

      (20) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 2100.

    21. [21]

      (21) Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2005, 7, 505.

    22. [22]

      (22) Taveira, L. V.; Macak, J. M.; Tsuchiya, H.; Dick, L. P.; Schmuki, P. J. Electrochem. Soc. 2005, 152, B405.

    23. [23]

      (23) Macak, J. M.; Sirotna, K.; Schmuki, P. Electrochim. Acta 2005, 50, 3679.

    24. [24]

      (24) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J Mater. Res. 2005, 20, 230.

    25. [25]

      (25) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova S.; Schmuki, P. Angew Chem. Int. Edit. 2005, 44, 7463.

    26. [26]

      (26) Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick L. F. P.; Schmuki, P. Electrochem. Commun. 2006, 8, 544.

    27. [27]

      (27) Zlamal, M.; Macak, J. M.; Schmuki, P.; Krysa, J. Electrochem. Commun. 2007, 9, 2822.

    28. [28]

      (28) Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol. 2007, 41, 4735.

    29. [29]

      (29) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. Chem. Phys. Lett. 2006, 419, 426.

    30. [30]

      (30) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano. Lett. 2006, 6, 1080.

    31. [31]

      (31) Giovanni, A.; Battiston, G. A.; Gerbasi, R.; Porchia, M.; Man , A. Thin Solid Films 1994, 239, 186.

    32. [32]

      (32) Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K. Langmuir 2003, 19, 3889.

    33. [33]

      (33) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Mat. 2002, 14, 2717.

    34. [34]

      (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    35. [35]

      (35) Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63.

    36. [36]

      (36) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.

    37. [37]

      (37) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.

    38. [38]

      (38) Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.

    39. [39]

      (39) Sanjinés, R.; Tang, H.; Berger, H.; zzo, F.; Margaritondo, G.; Lévy, F. J. Appl. Phys. 1994, 75, 2945.

    40. [40]

      (40) Bendavid, A.; Martin, P. J.; Jamting, A.; Takikawa, H. Thin Solid Films 1999, 355-356, 6.

    41. [41]

      (41) Chang, H. J.; Kong, K. J.; Choi, Y. S.; In, E. J.; Choi, Y. M.; Baeg, J. O.; Moon, S. J. Chem. Phys. Lett. 2004, 398, 449.

    42. [42]

      (42) Zhao, J. X.; Dai, B. Q. Mater. Chem. Phys. 2004, 88, 244.

    43. [43]

      (43) Yang, K. S.; Dai, Y.; Huang, B. B., Whangbo, M. H. Chem. Mater. 2008, 20, 6528.

    44. [44]

      (44) Argaman, N.; Mako, G. Am. J. Phys. 2000, 68, 69.


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(1740)
  • Abstract views(2996)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return