Citation: AN Xiao-Ying, HE Rong-Xing, HUANG Cheng, LI Ming. Mechanism of AuCl3-Catalyzed Synthesis of Highly Substituted Furans Based on 2-(1-Alkynyl)-2-alken-1-ones[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 577-583. doi: 10.3866/PKU.WHXB20110338 shu

Mechanism of AuCl3-Catalyzed Synthesis of Highly Substituted Furans Based on 2-(1-Alkynyl)-2-alken-1-ones

  • Received Date: 17 October 2010
    Available Online: 21 February 2011

    Fund Project: 教育部科学技术重点项目(104263)资助 (104263)

  • We investigated the mechanism of the AuCl3-catalyzed synthesis of highly substituted furans from 2-(1-alkynyl)-2-alken-1-ones with nucleophiles using the density functional theory (DFT) with B3LYP function, and obtained the optimal pathway. The rate-determining step of the cyclization is H-migration from the hydroxy group to a ligand Cl of AuCl3 with a 49.3 kJ·mol-1 energy barrier. The calculated results show that the ligand Cl of AuCl3 plays an important role in the reaction, which stabilizes the catalyst and is also directly involved in the reaction. The active energy of proton transfer decreases from 71.5 to 49.3 kJ·mol-1 by assisting the proton transfer. In addition, the reason why HBF4 cannot catalyze the cyclization of 2-(1-alkynyl)-2-alken-1-ones is also discussed in this work. The theoretical results are consistent with the experimental observations.

  • 加载中
    1. [1]

      (1) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. Tetrahedron 1998, 54, 1955.

    2. [2]

      (2) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209.

    3. [3]

      (3) Hou, X. L.; Yang, Z.; Wong, H. N. C. Progress in Heterocyclic Chemistry (Vol. 14); Pergamon: Oxford, 2002; pp 139-179.

    4. [4]

      (4) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.

    5. [5]

      (5) Shipman, M. Contemp. Org. Synth. 1995, 2, 1.

    6. [6]

      (6) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500.

    7. [7]

      (7) Alexander, V. K.; Vladimir, G. J. Org. Chem. 2002, 67, 95.

    8. [8]

      (8) Gabriele, B.; Giuseppe, S.; Egidio, L. J. Org. Chem. 1999, 64, 7687.

    9. [9]

      (9) Shu, X. Z.; Liu, X. Y.; Xiao, H. Q.; Ji, K.G.; Guo, L. N.; Qi, C. Z.; Liang, Y. M. Adv. Synth. Catal. 2007, 349, 2493.

    10. [10]

      (10) Fang, R.; Su, C. Y.; Zhao, C. Y.; Phillips, D. L. Organometallics 2009, 28, 741.

    11. [11]

      (11) Zhang, J. S.; Shen, W.; Li, L. Q.; Li, M. Organometallics 2009, 28, 3129.

    12. [12]

      (12) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.

    13. [13]

      (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    14. [14]

      (14) Miertus, S.; Tomasi. J. Chem. Phys. 1982, 65, 239.

    15. [15]

      (15) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    16. [16]

      (16) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; et al. NBO 5.0; Theoretical Chemistry Institute: University of Wisconsin, Madison, WI, 2001.

    17. [17]

      (17) Biegler-K?nig, F.; Sch?nbohm, J.; Derdau. R.; et al. AIM 2000, Version 2.0; McMaster University, 2002.

    18. [18]

      (18) Norberg, D.; Larsson., P. E.; Salhi-Benachenhou, N. J. Phys. Chem. A 2008, 112, 4694

    19. [19]

      (19) Benfatti, F.; Bottoni, A.; Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Stenta, M.; Tolomelli, A. Adv. Synth. Catal. 2008, 350, 2261.

    20. [20]

      (20) Wasserman, H. H.; Fukuyama, J. M. Tetrahedron Letters 1991, 32, 7127.


  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(1128)
  • Abstract views(3638)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return