Citation: AN Xiao-Hui, LIU Da-Huan, ZHONG Chong-Li. Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 553-558. doi: 10.3866/PKU.WHXB20110319 shu

Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks

  • Received Date: 15 September 2010
    Available Online: 15 February 2011

    Fund Project: 国家杰出青年科学基金(20725622) (20725622)国家自然科学基金(20876006, 20821004, 20906002)资助项目 (20876006, 20821004, 20906002)

  • Grand canonical Monte Carlo (GCMC) simulations were performed to study the stepped behaviors of carbon dioxide adsorption in the following five isoreticular metal-organic frameworks (IRMOFs): IRMOF-1, -8, -10, -14, -16. The simulation results show that the stepped phenomenon occurs easily when the temperature is low and the pore size is large for these IRMOFs. The critical pressure and temperature where the stepped behavior occurs show a linear relationship with the pore size. The results also further indicate that the electrostatic interaction between CO2 and CO2 molecules plays a dominant role on the stepped behavior. All these findings may provide useful information for the design and modification of MOFs for the adsorption and separation of carbon dioxide in gas mixtures.

  • 加载中
    1. [1]

      (1) Kuang, S. L. Modern Chemical Industry 2008, 28, 3.

    2. [2]

      [邝生鲁. 现代化工, 2008, 28, 3.]

    3. [3]

      (2) Zukal, A.; Dominguez, I.; Mayerová, J.; ?ejka, J. Langmuir 2009, 25, 10314.

    4. [4]

      (3) Xu, X. L.; Zhao, X. X.; Sun, L. B.; Liu, X. Q. J. Nat. Gas Chem. 2008, 17, 391.

    5. [5]

      (4) Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci 2010, 342, 575.

    6. [6]

      (5) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae , H. K.; Eddaoudi , M.; Kim, J. Nature 2003, 423, 705.

    7. [7]

      (6) Dunbar, K. R.; Heintz, R. A. P. Inorg. Chem. 1997, 45, 283.

    8. [8]

      (7) Gramaccioli, C. M. Acta Crystallogr. 1966, 21, 600.

    9. [9]

      (8) Okada, K.; Kay, M. I.; Cromer, D. T.; Almodovar, I. J. Chem. Phys. 1966, 44, 1648.

    10. [10]

      (9) Férey, G. Chem. Soc. Rev. 2008, 37, 191.

    11. [11]

      (10) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    12. [12]

      (11) Li, J. R.; Timmons, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2009, 131, 6368.

    13. [13]

      (12) Yu, Q.; Zeng, Y. F.; Zhao, J. P.; Yang, Q.; Bu, X. H. Cryst. Growth Des. 2010, 10, 1878.

    14. [14]

      (13) Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. 2008, 120, 8574.

    15. [15]

      (14) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Sunrr, R. Q. J. Am. Chem. Soc. 2008, 130, 406.

    16. [16]

      (15) Yang, Q. Y.; Liu, D. H.; Zhong, C. L. J. Chem. Ind. Eng. (China) 2009, 60, 805.

    17. [17]

      [阳庆元, 刘大欢, 仲崇立, 化工学报, 2009, 60, 805.]

    18. [18]

      (16) Yang, Q. Y.; Zhong, C. L.; Chen, J. F. J. Phys. Chem. C 2008, 112, 1562.

    19. [19]

      (17) Accelrys, Inc. Materials Studio, 3.0 V; Accelrys, Inc.: San Die , CA 2003.

    20. [20]

      (18) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.

    21. [21]

      (19) Yang, Q. Y.; Zhong, C. L. Langmuir 2009, 25, 2302.

    22. [22]

      (20) Mayo, S. L.; Olafson, B. D.; ddard III, W. A. J. Phys. Chem. 1990, 94, 8897.

    23. [23]

      (21) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.

    24. [24]

      (22) Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2006, 110, 655.

    25. [25]

      (23) Liu, D. H.; Zheng, C. C.; Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. C 2009, 113, 5004.

    26. [26]

      (24) Yang, Q. Y.; Zhong, C. L. ChemPhysChem 2006, 7, 1417.

    27. [27]

      (25) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    28. [28]

      (26) Xu, Q.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. J. Mater. Chem. 2010, 20, 706.


  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(1402)
  • Abstract views(4124)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return