Citation: ZHAO Min, ZHANG Yuan, WANG Lu. Second-Order Nonlinear Optical Properties of Organic Heteroaromatic Molecules with Carbazole Chromophores[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 584-588. doi: 10.3866/PKU.WHXB20110316 shu

Second-Order Nonlinear Optical Properties of Organic Heteroaromatic Molecules with Carbazole Chromophores

  • Received Date: 7 October 2010
    Available Online: 28 January 2011

    Fund Project: 国家自然科学基金(20871022)资助项目 (20871022)

  • Density functional theory (DFT) B3LYP/6-31G* method was used to optimize the geometrical structures of a series of heteroaromatic molecules with carbazole chromophores. The second-order nonlinear optical (NLO) properties and electronic spectra were then studied by finite field (FF) and time-dependent DFT (TD-DFT) methods at the 6-311G** level. The results showed that the polarizability α and the second-order NLO coefficient β values of all molecules were influenced greatly by the change of the push-pull electronic ability of the carbazole substituent groups and the introduction of heteroaromatic. When the pull electronic nitro and the push electronic hydroxyl were linked by carbazole substituent groups respectively and the furan heterocycle was introduced, the β values decreased (blue-shifted) with an increase in the maximum absorption wavelengths λmax of the molecules. The “nonlinear-transparency tradeoff” conflict was avoided because of the high second-order NLO responses and od transparency. All the compounds may have potential application in the development of NLO materials.

  • 加载中
    1. [1]

      (1) Geskin, V. M.; Lambert, C.; Bredas, J. L. J. Am. Chem. Soc. 2003, 125, 15651.

    2. [2]

      (2) Andreu, R.; Blesa, M. J.; Carrasquer, L.; Garin, J.; Orduna, J.; Villacampa, B.; Alcala, R.; Casado, J.; Delgado, M. C. R.; Navarrete, J. T. L.; Allain, M. J. Am. Chem. Soc. 2005, 127, 8835.

    3. [3]

      (3) Humphrey, J. L.; Lott, K. M.; Wright, M. E.; Duciauskas, D. J. Phys. Chem. B 2005, 109, 21496.

    4. [4]

      (4) Liu, C. G.; Qiu, Y. Q.; Su, Z. M.; Yang, G. C.; Sun, S. L. J. Phys. Chem. C 2008, 112, 7021.

    5. [5]

      (5) Rao, V. P.; Jen, A. K. Y.; Wong, K. Y.; Drost, K. J. Tetrahedron Lett. 1993, 34, 1747.

    6. [6]

      (6) Hsu, C. C.; Shu, C. F.; Huang, T. H.; Wang, C. H.; Lin, J. L.; Wang, Y. K.; Zang, Y. L. Chem. Phys. Lett. 1997, 274, 466.

    7. [7]

      (7) Bai, H. T.; Lin, H. C.; Luh, T. Y. J. Org. Chem. 2010, 75, 4591.

    8. [8]

      (8) Umeyama, T.; Takamatsu, T.; Tezuka, N.; Matano, Y.; Araki, Y.; Wada, T.; Yoshikawa, O.; Sagawa, T.; Yoshikawa, S.; Imahori, H. J. Phys. Chem. C 2009, 113, 10798.

    9. [9]

      (9) Li, Q. Q.; Lu, C. G.; Zhu, J.; Fu, E. Q.; Zhong, C.; Li, S. Y.; Cui, Y. P.; Qin, J. G.; Li, Z. J. Phys. Chem. B 2008, 112, 4545.

    10. [10]

      (10) Christopher, R. M.; Brian, J. M.; Lawrence, C. N.; Michael, A. M.; Eric L, H.; Benjamin A, B. J. Org. Chem. 2004, 69, 8239.

    11. [11]

      (11) Ma, J.; Li, S.; Jiang, Y. Macromolecules 2002, 35, 1109.

    12. [12]

      (12) Dalton, L.; Davies, J.; Elan van, A.; Sullivan, P. J. Am. Chem. Soc. 2008, 130, 10565.

    13. [13]

      (13) Song, N. H.; Ma, X. H.; Liang, R.; Yang, F.; Zhao, Z. H.; Zhang, A. X.; Zhou, Q. F.; Zhang, J. P. J. Mater. Chem. 2008, 18, 1756.

    14. [14]

      (14) Qian, Y. Dyes Pigments 2008, 76, 277.

    15. [15]

      (15) Albert, D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.

    16. [16]

      (16) Luo, S. S.; Qiu, Y. Q.; Liu, X. D.; Liu, C. G.; Su, Z. M. Acta Phys. -Chim. Sin. 2009, 25, 1867.

    17. [17]

      [罗姗姗, 仇永清, 刘晓东, 刘春光, 苏忠民. 物理化学学报, 2009, 25, 1867.]

    18. [18]

      (17) Srinivas, K.; Sitha, S.; Rao, V. J.; Bhanuprakash, K. Opt. Mater. 2006, 28, 1006.

    19. [19]

      (18) Milian, B.; Orti, E.; Hernandez, V.; Navarrete, J. T. L.; Otsubo, T. J. Phys. Chem. B 2003, 107, 12175.

    20. [20]

      (19) Bo, D. S.; Ren, A. M.; Feng, J. K.; Yang, L. Chem. J. Chin. Univ. 2007, 28, 955.

    21. [21]

      [薄冬生, 任爱民, 封继康, 杨 丽. 高等学校化学学报, 2007, 28, 955.]

    22. [22]

      (20) Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404.

    23. [23]

      (21) Hua, J. L.; Zhang, W.; Luo, J. D.; Qin, J. G.; Sheng, Y.; Lu, Z. H. J. Chem. Res. -S 2001, 10, 418.

    24. [24]

      (22) Panthi, K.; Adhikari, R. M.; Kinstle, T. H. J. Phys. Chem. A 2010, 114, 4542.

    25. [25]

      (23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    26. [26]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, 2004.

    27. [27]

      (25) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.

    28. [28]

      (26) Radovic, L. R.; Karra, M.; Skokova, K.; Thrower, P. A.; Carta, G.; Cincotti, A.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Chem. Phys. Lett. 1998, 287, 75.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    7. [7]

      Yuai Duan Xuanyu Gan Yao Fu Yingjie Cao Hongliang Han Zhanfang Ma . Application and Innovative Design of Digital Technology in the Preparation Experiment of Cis(Trans)-Diglycine Copper Complexes. University Chemistry, 2026, 41(1): 373-381. doi: 10.12461/PKU.DXHX202504048

    8. [8]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    11. [11]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    12. [12]

      Shantao ZhangTianAo HouYandong WangZhimin FangYu WuHaolin WangTao ChenShuang ChenWenhua ZhangShengzhong (Frank) LiuShangfeng Yangπ-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells. Acta Physico-Chimica Sinica, 2026, 42(3): 100194-0. doi: 10.1016/j.actphy.2025.100194

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    20. [20]

      Haifeng ZHENGXingzhe GUOYunwei WEIXinfang WANGHuimin QIYuting YANJie ZHANGBingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029

Metrics
  • PDF Downloads(1080)
  • Abstract views(3558)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return