Citation: WANG Zhi-Ping, LUO Hong, GAO Li-Hua, WANG Ke-Zhi. Electrostatically Self-Assembled Films Prepared Using Bipolar Thiophene Hemicyanine and Prussian Blue[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 754-758. doi: 10.3866/PKU.WHXB20110313 shu

Electrostatically Self-Assembled Films Prepared Using Bipolar Thiophene Hemicyanine and Prussian Blue

  • Received Date: 30 November 2010
    Available Online: 28 January 2011

    Fund Project: 国家自然科学基金(20971016, 90922004, 20871011) (20971016, 90922004, 20871011) 中央高校基本科研业务费专项基金, 北京市自然科学基金(2092011) (2092011)

  • We successfully prepared a novel inorganic-organic hybrid electrostatically self-assembled multilayer film by alternately depositing Prussian blue (PB) and a thiophene-containing hemicyanine. The optical, electrochemical, and photoelectrochemical properties of the as-prepared films were studied by UV-visible absorption spectroscopy, cyclic voltammetry, and photoelectrochemical experiment. Linear increases in the absorbances at 376 and 698 nm with the number of deposited layers, up to at least 8 layers, indicated that film deposition was uniform and reproducible. The PB in the prepared films was found to occur surface-confined rather than diffusion-controlled redox reactions and the peak currents increased with an increase in the number of layers up to 5 layers. Upon irradiation with 100 mW·cm-2 white light the films exhibited stable and reproducible cathodic photocurrents, which increased as the number of layers increased up to 4 layers. A maximum photocurrent density of 0.28 μA·cm-2 was found for the four-layer film at a bias voltage of -0.4 V vs the saturated calomel electrode.

  • 加载中
    1. [1]

      (1) Decher, G. Science 1997, 277, 1232.

    2. [2]

      (2) Zhang, X.; Chen, H.; Zhang, H. Y. Chem. Commun. 2007, 1395.

    3. [3]

      (3) Wang, K. Z.; Gao, L. H. Mater. Res. Bull. 2002, 37, 2447.

    4. [4]

      (4) Lang, A. D.; Zhai, J.; Huang, C. H.; Gan, L. B.; Zhao, Y. L.; Zhou, D. J.; Chen, Z. D. J. Phys. Chem. B 1998, 102, 1424.

    5. [5]

      (5) Yao, Q. H.; Shan, L.; Li, F. Y.; Yin, D. D.; Huang, C. H. Acta Phys. -Chim. Sin. 2003, 19, 635.

    6. [6]

      [姚巧红, 单 路, 李富有, 尹冬冬, 黄春辉, 物理化学学报, 2003, 19, 635.]

    7. [7]

      (6) Wang, K. Z.;?Huang, C. H.; Xu, G. X.; Xu, Y.; Liu, Y. Q.; Zhu, D. B.; Zhao, X. S.; Xie, X. M.; Wu. N. Z. Chem. Mater. 1994, 6, 1986.

    8. [8]

      (7) Wang, K. Z.;?Huang, C. H.; Xu, G. X.; Zhao, X. S.; Xia, X. H.; Wu, N. Z.; Xu, L. G.; Li, T. K. Thin Solid Films 1994, 252, 139.

    9. [9]

      (8) Wang, K. Z.; Huang, C. H.; Xu, G. X.; Wang, R. J. Polyhedron 1995, 14, 3669.

    10. [10]

      (9) Wang, K. Z.; Jiang, W.; Huang, C. H.; Xu, G. X.; Xu, L. G.; Li, T. K.; Zhao, X. S.; Xie, X. M. Chem. Lett. 1995, 1761.

    11. [11]

      (10) Wang, K. Z.; Huang, C. H.; Zhou, D. J.; Xu, G. X.; Xu, Y.; Li, Y. Q.; Zhu, D. B.; Zhao, X. S.; Xie, X. M. Solid State Commun. 1995, 93, 189.

    12. [12]

      (11) Wang, L. Y.; Wang, K. Z.; Gao, L. H. Acta Chim. Sin. 2003, 61, 1877.

    13. [13]

      [王丽颖. 王科志. 高丽华. 化学学报, 2003, 61, 1877.]

    14. [14]

      (12) Gao, L. H.; Hu, X. J.; Zheng, D. S.; Guo, Y.; Wang, K. Z. J. Nanosci. Nanotechnol. 2008, 8, 1355.

    15. [15]

      (13) Gao, L. H.; Wang, K. Z.; Wang, L. Y. J. Nanosci. Nanotechnol. 2010, 10, 2018.

    16. [16]

      (14) Ju, C. C.; Luo, H.; Wang, K. Z. J. Nanosci. Nanotechnol. 2010, 10, 2053.

    17. [17]

      (15) Zou, X.; Fan, Y.; Zhuang, M. Y.; Peng, J.; Wang, K. Z. J. Nanosci. Nanotechnol. 2010, 10, 2203.

    18. [18]

      (16) Zhang, Y. Q.; Gao, L. H.; Wang, K. Z.; Gao, H. J.; Wang, Y. L. J. Nanosci. Nanotechnol. 2008, 8, 1248.

    19. [19]

      (17) Wang, Y. B.; Xia, J. Y.; Gao, L. H.; Wang, K. Z. Chem. J. Chin. Univ. 2007, 28, 1175.

    20. [20]

      [王宜冰, 夏即雅, 高丽华, 王科志. 高校化学学报, 2007, 28, 1175.]

    21. [21]

      (18) Zhou, X.; Fan, Y.; Zhuang, M. Y.; Peng, J.; Gao, L. H.; Wang, K. Z. Acta Chim. Sin. 2010, 68, 2250.

    22. [22]

      [邹 旭, 范 娅, 庄, 彭 景, 高丽华, 王科志. 化学学报, 2010, 68,. 2250.]

    23. [23]

      (19) Zhang, Y. Q.; Gao, L. H.; Duan, Z. M.; Wang, K. Z.; Wang, Y. L.; Gao, H. J. Acta Chim. Sin. 2004, 62, 738.

    24. [24]

      [张玉琦, 高, 段智明, 王科志, 王业亮, 高鸿均. 化学学报 2004, 62, 738.]

    25. [25]

      (20) Mishra, A.; Ma, C. Q.; Baeuerle, P. Chem. Rev. 2009, 109, 1141.

    26. [26]

      (21) Karyakin, A. A. Electroanalysis 2001, 13, 813.

    27. [27]

      (22) Dei, A. Angew. Chem. Int. Edit. 2005, 44, 1160.

    28. [28]

      (23) Ricci, F.; Palleschi, G. Biosens. Bioelectron. 2005, 21, 389.

    29. [29]

      (24) Itaya, K.; Uchida, I.; Neff, V. D. Acc.ounts Chem. Res. 1986, 19, 162.

    30. [30]

      (25) Robin, M. B. Inorg. Chem. 1962, 1, 337.

    31. [31]

      (26) Dostal, A.; Meyer, B.; Scholz, F.; Bond, A. M.; Marken, F.; Shaw, S. J. J. Phys. Chem. 1995, 99, 2096.


  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    18. [18]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(1124)
  • Abstract views(2458)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return