Citation: XU Jun-Ke, SHEN Li-Hong, ZHOU Wei, MA Jian-Xin. Mechanism of Biogas Reforming for Hydrogen Production over Ni-Co Bimetallic Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 697-704. doi: 10.3866/PKU.WHXB20110309 shu

Mechanism of Biogas Reforming for Hydrogen Production over Ni-Co Bimetallic Catalyst

  • Received Date: 27 September 2010
    Available Online: 27 January 2011

    Fund Project: 科技部国际合作重点项目(2007DFC61690) (2007DFC61690)汉高同济教席(081591)资助 (081591)

  • Ni-Co bimetallic catalysts supported on commercial γ-Al2O3 modified with La2O3 were prepared by conventional incipient wetness impregnation for biogas reforming. The catalysts were characterized using temperature-programmed hydrogenation (TPH), temperature-programmed oxygenation (TPO), temperature-programmed surface reaction (TPSR), temperature-programmed desorption (TPD), and a pulse experiment. During biogas reforming the surface carbon species on Ni-Co/La2O3-γ-Al2O3 originated mainly from the cracking of CH4 and the contribution of CO2 was insignificant. Cracking of CH4 results in three carbon species of Cα, Cβ, and Cγ, which have different reaction activities. During the reaction, the amount of Cα decreased but Cβ and Cγ increased. In addition, Cγ could be changed into inactive graphite carbon. The activation of CH4 and CO2 was mutually promoted in the reforming reaction. It was revealed that the controlling step for biogas reforming over the Ni-Co/La2O3-γ-Al2O3 catalyst could be the reaction of the surface species of O with C to form CO or with CHx to give CHxO followed by the formation of CO and adsorbed H.

  • 加载中
    1. [1]

      (1) Effendi, A.; Hellgardt, K.; Zhang, Z.; Yoshida, G. T. Fuel 2005, 84, 869.

    2. [2]

      (2) Duerr, M.; Gair, S.; Cruden, A.; McDonald, J. Int. J. Hydrog. Energy 2007, 32, 705.

    3. [3]

      (3) Purwanto, H.; Akiyama, T. Int. J. Hydrog. Energy 2006, 31, 491.

    4. [4]

      (4) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391.

    5. [5]

      (5) Effendi, A.; Zhang, Z. G.; Hellgardt, K.; Hondaa, K.; Yoshida, T. Catal. Today 2002, 77, 181.

    6. [6]

      (6) Yentekakis, I. V.; Papadam, T.; ula, G. Solid State Ionics 2008, 179, 1521.

    7. [7]

      (7) Ashrafi, M.; Pr?ll, T.; Pfeifer, C.; Hofbauer, H. Energ. Fuel 2008, 22, 4182.

    8. [8]

      (8) Ashrafi, M.; Pfeifer, C.; Pröll, T.; Hofbauer, H. Energ. Fuel 2008, 22, 4190.

    9. [9]

      (9) Chun, Y. N.; Song, H. W.; Kim, S. C.; Lim, M. S. Energ. Fuel 2008, 22, 123.

    10. [10]

      (10) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391.

    11. [11]

      (11) Muradov, N.; Smith, F. Energ. Fuel 2008, 22, 2053.

    12. [12]

      (12) Xu, J. K.; Ren, K. W.; Wang, X. L.; Zhou, W.; Pan, X. M.; Ma, J. X. Acta Phys. -Chim. Sin. 2008, 24, 1568.

    13. [13]

      [徐军科, 任克威, 王晓蕾, 周 伟, 潘相敏, 马建新. 物理化学学报, 2008, 24, 1568.]

    14. [14]

      (13) Xu, J. K.; Zhou, W.; Li, Z. J.; Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 6646.

    15. [15]

      (14) Xu, J. K.; Zhou, W.; Li, Z. J.; Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2010, 35, 13013.

    16. [16]

      (15) Xu, J. K.; Zhou, W.; Wang, J. H.; Li, Z. J.; Ma, J. X. Chinese J. Catal. 2009, 30, 1076.

    17. [17]

      (16) Wang, H. Y.; Au, C. T. Catal. Lett. 1996, 38, 77.

    18. [18]

      (17) Wang, H. Y.; Au, C. T. Appl. Catal. A 1997, 155, 239.

    19. [19]

      (18) Kim, G. J.; Cho, D. S.; Kim, K. H.; Kim. J. H.; Catal. Lett. 1994, 28, 41.

    20. [20]

      (19) Zhang, Z. L.; Verykios, X. E. Catal. Lett. 1996, 38, 175.

    21. [21]

      (20) Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. Catal. Lett. 1994, 25, 265.

    22. [22]

      (21) Erd?helyi, A.; Fodor, K.; Solymosi, F. Stud. Surf. Sci. Catal. 1997, 107, 525.

    23. [23]

      (22) Xu, Z. L. Journal of Jilin Normal University (Natural Science Edition) 2003, 20.

    24. [24]

      [徐占林. 吉林师范大学学报: 自然科学版, 2003, 20.]

    25. [25]

      (23) Bradford, M. C. J.; Vannice, M. A. J.Catal. 1998, 173, 157.

    26. [26]

      (24) Schuurman, Y.; Marquez-Alvarez, C.; Kroll, V. C. H.; Mirodatos, C. Catal. Today 1998, 46, 185.

    27. [27]

      (25) Hu, Y. H.; Ruckenstein, E. J. Phys. Chem. B 1997, 101, 7563.

    28. [28]

      (26) Chang, J. S.; Park, S. E.; Yoo, J. W.; Park, J. N. J. Catal. 2000, 195, 1.

    29. [29]

      (27) Kroll, V. C. H.; Swann, H. M.; Lacombe, S.; Mirodatos, C. J. Catal. 1996, 164, 387.

    30. [30]

      (28) Osaki, T.; Masuda, H.; Horiuchi, T.; Mori, T. Catal. Lett. 1995, 34, 59.

    31. [31]

      (29) Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194, 198.

    32. [32]

      (30) Darujati, A. R. S.; Thomson, W. J. Chem. Eng. Sci. 2006, 61, 4309.

    33. [33]

      (31) Nandini, A.; Pant, K. K.; Dhingra, S. C. Appl. Catal. A 2006, 308, 119.

    34. [34]

      (32) Tsipouriari, V. A.; Verykios, X. E. Catal. Today 2001, 64, 83.

    35. [35]

      (33) Qian, L.; Yan, Z. F. Journal of Fudan University (Natural Science) 2003, 42, 392.

    36. [36]

      [钱 岭, 阎子峰. 复旦学报: 自然科学版, 2003, 42, 392.]

    37. [37]

      (34) Zhang, Z. L.; Verykios, X. E. Catal. Today 1994, 21, 589.

    38. [38]

      (35) Guo, J. J.; Lou, H.; Zheng, X. M. Carbon 2007, 45, 1314.


  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(1229)
  • Abstract views(3830)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return