Citation:
XU Jun-Ke, SHEN Li-Hong, ZHOU Wei, MA Jian-Xin. Mechanism of Biogas Reforming for Hydrogen Production over Ni-Co Bimetallic Catalyst[J]. Acta Physico-Chimica Sinica,
;2011, 27(03): 697-704.
doi:
10.3866/PKU.WHXB20110309
-
Ni-Co bimetallic catalysts supported on commercial γ-Al2O3 modified with La2O3 were prepared by conventional incipient wetness impregnation for biogas reforming. The catalysts were characterized using temperature-programmed hydrogenation (TPH), temperature-programmed oxygenation (TPO), temperature-programmed surface reaction (TPSR), temperature-programmed desorption (TPD), and a pulse experiment. During biogas reforming the surface carbon species on Ni-Co/La2O3-γ-Al2O3 originated mainly from the cracking of CH4 and the contribution of CO2 was insignificant. Cracking of CH4 results in three carbon species of Cα, Cβ, and Cγ, which have different reaction activities. During the reaction, the amount of Cα decreased but Cβ and Cγ increased. In addition, Cγ could be changed into inactive graphite carbon. The activation of CH4 and CO2 was mutually promoted in the reforming reaction. It was revealed that the controlling step for biogas reforming over the Ni-Co/La2O3-γ-Al2O3 catalyst could be the reaction of the surface species of O with C to form CO or with CHx to give CHxO followed by the formation of CO and adsorbed H.
-
Keywords:
-
Nickel
, - Cobalt,
- Bimetallic catalyst,
- Biogas reforming,
- Hydrogen production,
- Mechanism
-
-
-
-
[1]
(1) Effendi, A.; Hellgardt, K.; Zhang, Z.; Yoshida, G. T. Fuel 2005, 84, 869.
-
[2]
(2) Duerr, M.; Gair, S.; Cruden, A.; McDonald, J. Int. J. Hydrog. Energy 2007, 32, 705.
-
[3]
(3) Purwanto, H.; Akiyama, T. Int. J. Hydrog. Energy 2006, 31, 491.
-
[4]
(4) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391.
-
[5]
(5) Effendi, A.; Zhang, Z. G.; Hellgardt, K.; Hondaa, K.; Yoshida, T. Catal. Today 2002, 77, 181.
-
[6]
(6) Yentekakis, I. V.; Papadam, T.; ula, G. Solid State Ionics 2008, 179, 1521.
-
[7]
(7) Ashrafi, M.; Pr?ll, T.; Pfeifer, C.; Hofbauer, H. Energ. Fuel 2008, 22, 4182.
-
[8]
(8) Ashrafi, M.; Pfeifer, C.; Pröll, T.; Hofbauer, H. Energ. Fuel 2008, 22, 4190.
-
[9]
(9) Chun, Y. N.; Song, H. W.; Kim, S. C.; Lim, M. S. Energ. Fuel 2008, 22, 123.
-
[10]
(10) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391.
-
[11]
(11) Muradov, N.; Smith, F. Energ. Fuel 2008, 22, 2053.
-
[12]
(12) Xu, J. K.; Ren, K. W.; Wang, X. L.; Zhou, W.; Pan, X. M.; Ma, J. X. Acta Phys. -Chim. Sin. 2008, 24, 1568.
-
[13]
[徐军科, 任克威, 王晓蕾, 周 伟, 潘相敏, 马建新. 物理化学学报, 2008, 24, 1568.]
-
[14]
(13) Xu, J. K.; Zhou, W.; Li, Z. J.; Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 6646.
-
[15]
(14) Xu, J. K.; Zhou, W.; Li, Z. J.; Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2010, 35, 13013.
-
[16]
(15) Xu, J. K.; Zhou, W.; Wang, J. H.; Li, Z. J.; Ma, J. X. Chinese J. Catal. 2009, 30, 1076.
-
[17]
(16) Wang, H. Y.; Au, C. T. Catal. Lett. 1996, 38, 77.
-
[18]
(17) Wang, H. Y.; Au, C. T. Appl. Catal. A 1997, 155, 239.
-
[19]
(18) Kim, G. J.; Cho, D. S.; Kim, K. H.; Kim. J. H.; Catal. Lett. 1994, 28, 41.
-
[20]
(19) Zhang, Z. L.; Verykios, X. E. Catal. Lett. 1996, 38, 175.
-
[21]
(20) Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. Catal. Lett. 1994, 25, 265.
-
[22]
(21) Erd?helyi, A.; Fodor, K.; Solymosi, F. Stud. Surf. Sci. Catal. 1997, 107, 525.
-
[23]
(22) Xu, Z. L. Journal of Jilin Normal University (Natural Science Edition) 2003, 20.
-
[24]
[徐占林. 吉林师范大学学报: 自然科学版, 2003, 20.]
-
[25]
(23) Bradford, M. C. J.; Vannice, M. A. J.Catal. 1998, 173, 157.
-
[26]
(24) Schuurman, Y.; Marquez-Alvarez, C.; Kroll, V. C. H.; Mirodatos, C. Catal. Today 1998, 46, 185.
-
[27]
(25) Hu, Y. H.; Ruckenstein, E. J. Phys. Chem. B 1997, 101, 7563.
-
[28]
(26) Chang, J. S.; Park, S. E.; Yoo, J. W.; Park, J. N. J. Catal. 2000, 195, 1.
-
[29]
(27) Kroll, V. C. H.; Swann, H. M.; Lacombe, S.; Mirodatos, C. J. Catal. 1996, 164, 387.
-
[30]
(28) Osaki, T.; Masuda, H.; Horiuchi, T.; Mori, T. Catal. Lett. 1995, 34, 59.
-
[31]
(29) Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194, 198.
-
[32]
(30) Darujati, A. R. S.; Thomson, W. J. Chem. Eng. Sci. 2006, 61, 4309.
-
[33]
(31) Nandini, A.; Pant, K. K.; Dhingra, S. C. Appl. Catal. A 2006, 308, 119.
-
[34]
(32) Tsipouriari, V. A.; Verykios, X. E. Catal. Today 2001, 64, 83.
-
[35]
(33) Qian, L.; Yan, Z. F. Journal of Fudan University (Natural Science) 2003, 42, 392.
-
[36]
[钱 岭, 阎子峰. 复旦学报: 自然科学版, 2003, 42, 392.]
-
[37]
(34) Zhang, Z. L.; Verykios, X. E. Catal. Today 1994, 21, 589.
-
[38]
(35) Guo, J. J.; Lou, H.; Zheng, X. M. Carbon 2007, 45, 1314.
-
[1]
-
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[3]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[4]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[8]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[9]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[10]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[13]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[14]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[15]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[16]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(1229)
- Abstract views(3875)
- HTML views(22)