Citation: CHEN Dong-Po, ZHANG Xiao-Dan, WEI Chang-Chun, LIU Cai-Chi, ZHAO Ying. Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 425-431. doi: 10.3866/PKU.WHXB20110222 shu

Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell

  • Received Date: 20 September 2010
    Available Online: 4 January 2011

    Fund Project: 国家高技术研究发展规划(863) (2007AA05Z436, 2009AA050602) (863) (2007AA05Z436, 2009AA050602) 国家重点基础研究发展规划(973) (2006CB202602, 2006CB202603) (973) (2006CB202602, 2006CB202603) 国家自然科学基金(60976051) (60976051)教育部新世纪人才计划(NCET-08-0295)资助项目 (NCET-08-0295)

  • Blocking layer thin films were prepared on a conductive fluorine-doped tin oxide (FTO) substrate by the hydrolysis of TiCl4 solution with different concentrations. This blocked the recombination between photoelectrons and I3-. Blocking layer compositions were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The surface morphology and transmittance were determined by field emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometry. The photovoltaic performance of the dye-sensitized solar cells (DSSC) was measured under AM1.5 illumination and under dark conditions. We found that the blocking layers were composed of TiO2 particles. Increasing the concentration of TiCl4 in solution leads to an increase in the blocking layer thickness. Apart from the increase in thickness, the morphology develops as the concentration increases. The transmittance of FTO decreases after the blocking layers deposit on the surface and the blocking layers prepared using 0.04 mol·L-1 TiCl4 solution can suppress the dark current most efficiently and we thus obtained the highest power conversion efficiency of 7.84% under AM1.5 illumination conditions.

  • 加载中
    1. [1]

      (1) Huang, S. Y.; Schlichtholrl, G.; Nozik, A. J. J. Phys. Chem. B 1997, 101, 2576.

    2. [2]

      (2) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Adv. Mater. 2008, 20, 195.

    3. [3]

      (3) Wang, Q.; Ito, S.; Gr?tzel, M.; Fabregat-Santia , F.; Mora- Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.

    4. [4]

      (4) Chiba, Y.; Islam, A.; Komiya, R.; Koide, N.; Han, L. Appl. Phys. Let. 2006, 88, 223505.

    5. [5]

      (5) Zhang, Q.; He, Y. Q. Materials Review 2008, 28, 95.

    6. [6]

      (6) Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165.

    7. [7]

      (7) Ito, S.; Liska, P.; Comte, P.; Gr?tzel, M. Chem. Commun. 2005, 25, 4351.

    8. [8]

      (8) Yoo, B.; Kim, K. J.; Bang, S.Y.; Ko, M. J.; Kim, K. Journal of Electroanalytical Chemistry 2010, 638, 161.

    9. [9]

      (9) Kay, A.; Gr?tzel, M. Chem. Mater. 2002, 14, 2930.

    10. [10]

      (10) van de Lagemaat, J.; Park, N.G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.

    11. [11]

      (11) Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santia , F.; Ferriols, N. S. J. Phys. Chem. B 2000, 104, 2287.

    12. [12]

      (12) Pichot, F.; Ferrere, S.; Fields, C. L.; Gregg, B. A. J. Phys. Chem. B 2001, 105, 1422.

    13. [13]

      (13) Zhu, K.; Schiff, E. A.; Park, N. G.; Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2002, 80, 685.

    14. [14]

      (14) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 930.

    15. [15]

      (15) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 7392.

    16. [16]

      (16) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394.

    17. [17]

      (17) Liu, X. Z.; Huang, Z.; Li, K. X.; Li, H.; Li, D. M.; Chen, L. Q. Chin. Phys. Lett. 2006, 9, 2606.

    18. [18]

      (18) Karthikeyan, C. S.; Peter, K.; Wietasch, H.; Thelakkat, M. Sol. Energy Mater. 2007, 91, 432.

    19. [19]

      (19) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Gr?tzel, M. Nano. Lett. 2008, 8, 977.

    20. [20]

      (20) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. C 2007, 111, 8092.

    21. [21]

      (21) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. Chem. Commun. 2007, 188, 120.

    22. [22]

      (22) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. B 2006, 110, 25222.

    23. [23]

      (23) Kavan, L.; Grätzel, M. Electrochim. Acta 1995, 40, 643.

    24. [24]

      (24) Negishi, N.; Takeuchi, K. Sol-Gel Sci. Technol. 2001, 22, 23.

    25. [25]

      (25) Hattori, R.; to, H. Thin Solid Films 2007, 515, 8045.

    26. [26]

      (26) Dong, X.; Tao, J.; Li, Y. Y.; Wang, T.; Zhu, H. Acta Phys. -Chim. Sin. 2009, 25, 1874.

    27. [27]

      [董 祥, 陶 杰, 李莹滢, 汪 涛, 朱 宏. 物理化学学报, 2009, 25, 1874.].


  • 加载中
    1. [1]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    2. [2]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Binbin Liu Yang Chen Tianci Jia Chen Chen Zhanghao Wu Yuhui Liu Yuhang Zhai Tianshu Ma Changlei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-. doi: 10.1016/j.actphy.2025.100128

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    10. [10]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    11. [11]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    16. [16]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    17. [17]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    18. [18]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(2519)
  • Abstract views(3224)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return