Citation: CHEN Ye, CHEN Jian-Hua, GUO Jin. Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 363-368. doi: 10.3866/PKU.WHXB20110207 shu

Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface

  • Received Date: 19 June 2010
    Available Online: 22 December 2010

    Fund Project: 国家自然科学基金(50864001) (50864001)广西大学科研基金(XBZ100459)资助项目 (XBZ100459)

  • The simulations of O2 and CN adsorption on copper activated sphalerite (110) surface are performed by using plane wave-pseudopotential approach based on density functional theory. The results show that the density of states of 3d orbital of Cu atom on the activated sphalerite surface is located around the Fermi level, which can enhance the reactivity of the sphalerite surface. O2 adsorption is unavailable on unactivated sphalerite surface, while the Cu and S atoms on the copper activated sphalerite surface can donate electrons to the anti-bonding orbital π2p* of the O atom to form the adsorption bonding. The simulation of CN adsorption shows that copper activation improves the adsorption between CN molecule and the sphalerite surface. The Cu d orbital interacts with C p orbital to form a back donating π bonding, and the S atom interacts with the N atom.

  • 加载中
    1. [1]

      (1) Fuerstenao, M. C. Flotation. A. M. Caudin Memorial Volume; etallurgy Industry Press: Beijing, 1981.

    2. [2]

      [富尔斯特瑙M. C. 选(纪念A.M.高登文集). 北京: 冶金工业出版社, 1981.]

    3. [3]

      (2) Finkelstein, N. P. Int. J. Miner. Process. 1997, 52, 81.

    4. [4]

      (3) Popov, S. R.; Vucinic, D. R. Colloid Surf. 1990, 47, 81.

    5. [5]

      (4) Gerson, A. R; Lange, A. G..; Prince, K. E. J. Appl. Surf. Sci. 1999, 137, 207

    6. [6]

      (5) Hu, X.G.. Flotation of Nonferrous Sulphide Ore; Metallurgy ndustry Press: Beijing, 1987.

    7. [7]

      [胡熙庚. 有色金属硫化矿浮选. 京: 冶金工业出版社, 1987.]

    8. [8]

      (6) Sutherland, K. L.;Wark, I.W. Principles of flotation; ustralasian Institute of Mining and Metallurgy: Melbourne, 1955.

    9. [9]

      (7) Pattrick, R. A. D.; England, K. E. R.; Charnock, J. M.; osselmans, J. F.W. Int. J. Miner. Process. 1999, 55, 247.

    10. [10]

      (8) Chandra, A.P.; Gerson, A. R. Adv. Colloid Interface Sci. 2009, 45, 97.

    11. [11]

      (9) Richardson, P. E.; O’Dell, C. S. J. Electrochem. Soc. 1985, 132, 350.

    12. [12]

      (10) Glembotsky, B. A . Flotation Foundation of Physical Chemistry n the Process of Flotation; Trans. Zheng, F. Metallurgy ndustry Press: Beijing, 1985.

    13. [13]

      [B A 格列姆博茨基.浮选过程 理化学基础; 郑飞, 译. 北京: 冶金工业出版社, 1985.]

    14. [14]

      (11) Payne, M.C. ; Teter, M. P.; Allan, D. C.; Arias, T. A.; oannopoulos, J. D. Rev. Mod Phys. 1992, 64, 1045.

    15. [15]

      (12) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 7, 3865.

    16. [16]

      (13) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244.

    17. [17]

      (14) Vanderbilt, D. Phys. Rev. 1990, 41, 7892.

    18. [18]

      (15) Monkhorst, H. J.; Pack, J. D.; Phys. Rev. B 1976, 13, 5188.

    19. [19]

      (16) Fletcher, R. Comput. J. 1970, 13, 317.

    20. [20]

      (17) Lide, D. R. Handbook of Chemistry and Physics; CRC: Boca aton, 2001.

    21. [21]

      (18) Yin, Y. J. Handbook of Chemistry and physics; Higher ducation Press: Beijing, 1988.

    22. [22]

      [印永嘉. 物理化学手册. 北 : 高等教育出版社, 1988.]

    23. [23]

      (19) Hu, J. M.; Li, Y. Acta Chim. Sin. 2004, 62, 1185.

    24. [24]

      [胡建明, 李 . 化学学报, 2004, 62, 1185.]


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(1192)
  • Abstract views(2727)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return