Citation: CUI Feng-Chao, YU Hong-Bo, WANG Qin, YE Wan-Li, LIU Jing-Yao. Mechanism and Kinetics of the CH3OCF2CF2OCH3+Cl Reaction[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 337-342. doi: 10.3866/PKU.WHXB20110201 shu

Mechanism and Kinetics of the CH3OCF2CF2OCH3+Cl Reaction

  • Received Date: 27 September 2010
    Available Online: 15 December 2010

    Fund Project: 国家自然科学基金(20333050, 20303007, 20973077) (20333050, 20303007, 20973077)教育部新世纪优秀人才支持计划(NCET)资助项目 (NCET)

  • A direct density functional theory dynamics method was used to determine the mechanism and kinetics of the CH3OCF2CF2OCH3+Cl reaction. Potential energy surface information was obtained at the BB1K/6-31+G(d,p) level. The hydrogen abstraction channels and displacement processes of the two stable conformers (SC1 and SC2) of CH3OCF2CF2OCH3 were taken into consideration. Theoretical rate constants of the individual H-abstraction channels (one from SC1 and two from SC2) were calculated by improved canonical variational transition state theory (ICVT) with a small-curvature tunneling (SCT) correction. The overall rate constant (kT) was obtained by considering the weight factor of each conformer from the Boltzmann distribution function and the contribution of the two conformers to the whole reaction was discussed. The calculated kT(ICVT/SCT) at 296 K agrees well with the experimental value. Since experimental data were lacking for other temperatures, a three-parameter rate constant temperature expression for the total reaction within 200-2000 K was fitted to: kT=0.40×10-14T1.05exp(-206.16/T).

  • 加载中
    1. [1]

      (1) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.

    2. [2]

      (2) Hammitt, J. K.; Camm, F.; Connell, P. S.; Mooz,W. E.;Wolf, K. .;Wuebbles, D. J.; Bamezai, A. Nature 1987, 330, 711.

    3. [3]

      (3) Zhao, X. S. Acta Phys. -Chim. Sin. 2004, 20, 936.

    4. [4]

      [赵新生. 物理化学学报, 2004, 20, 936.]

    5. [5]

      (4) Hanel, R. A.; Conrath, B. J.; Kunde, V. G.; Prabhakara, C.; evah, I.; Salomonson, V. V.;Wolford, G. J. Geophys. Res. 1972, 77, 2629.

    6. [6]

      (5) Li, L. C.; Zhu, Y. Q.; Cha, D.; Tian, A. M. Acta Phys. -Chim. Sin. 2005, 21, 490

    7. [7]

      [李来才, 朱元强, 查东, 田安民. 物理化 学报, 2005, 21, 490.]

    8. [8]

      (6) Marchionni, G.; Visca, M. Eur. Pat. Appl., 1275678A. 2003, (Chem.Abs. 138): 90675.

    9. [9]

      (7) Sianesi, D.; Marchionni, G.; De Paasquale, R. J. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E. Ed.; Plenum Press: New York, 1994.

    10. [10]

      (8) Marchionni, G.; Ajroldi, G.; Pezzin, G. In Comprehensive Polymer Science. Second Supplement; Agarwal, S. L., Russom, . Eds.; Pergamon: London, 1996.

    11. [11]

      (9) Marchionni, G.; Guarda, P. A. U.S. Patent, 5, 744, 651, 1998

    12. [12]

      (10) Andersen, M. P. S.; Hurley, M. D.;Wallington, T. J.; Blandini, F.; Jensen, N. R.; Librando, V.; Hjorth, J.; Marchionni, G.; vataneo, M.; Visca, M.; Nicolaisen, F. M.; Nielsen, O. J. J. Phys. Chem. A 2004, 108, 1964.

    13. [13]

      (11) Rudolph, J.; Koppmann, R.; Plass-Dülmer, C. Atoms Environ. 1996, 30, 1887.

    14. [14]

      (12) Tanaka, P. L.; Oldfield, S.; Neece, J. D.; Mullins, C. B.; Allen, D. T. Environ. Sci. Technol. 2000, 34, 4470.

    15. [15]

      (13) Tucker, S. C. Truhlar, D. G. New Theoretical Concepts For nderstanding Organic Reaction; Dordrecht, Netherlands: dvanced Study Institute, Kluwer, 1989; pp 291-346.

    16. [16]

      (14) Lu, D. H.; Truong, T. N.; Melissas, V. S. Comput. Phys. Commum. 1992, 71, 235.

    17. [17]

      (15) Garrett, B. C.; Truhlar, D. G. J. Phys. Chem. 1991, 95, 10374.

    18. [18]

      (16) Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440.

    19. [19]

      (17) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. The Theory of hemical Reaction Dynamics; CRC Press: Boca Raton, 1985.

    20. [20]

      (18) Truhlar, D. G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 35, 59.

    21. [21]

      (19) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 08, 2715.

    22. [22]

      (20) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    23. [23]

      (21) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.

    24. [24]

      (22) Taghikhani, M.; Parsafar, G. A. J. Phys. Chem. A 2007, 111, 095.

    25. [25]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, evision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    26. [26]

      (24) Corchado, J. C.; Chang, Y. Y.; Fast, P. L.; et al. Polyrate, Version .7; University of Minnesota: Minneapolis, 2009.

    27. [27]

      (25) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W. J. Phys. Chem. 1980, 84, 1730.

    28. [28]

      (26) Lu, D. H.; Truong, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y. P.; Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; ancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G. Comput. Phys. Commun. 1992, 71, 235.

    29. [29]

      (27) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 2408.

    30. [30]

      (28) Truhlar, D. G. J. Comput. Chem. 1991, 12, 266.

    31. [31]

      (29) Chuang, Y. Y.; Truhlar, D. G. J. Chem. Phys. 2000, 112, 1221.

    32. [32]

      (30) Huber, K. P.; Herzberg, G. Constants of Diatomic Moleculars (Molecular Spectra and Molecular Structure, Vol. 4). Van ostrand Reinhold: New York, 1979.

    33. [33]

      (31) Hsu, K. J.; DeMore,W. B. J. Phys. Chem. 1995, 99, 11141.

    34. [34]

      (32) Louks, L. F.; Larden, K. J. Can. J. Chem. 1967, 45, 2763.

    35. [35]

      (33) Christensen, L. K.;Wallington, T. J.; Guschin, A.; Hurley, M. D. J. Phys. Chem. A 1999, 103, 4202.

    36. [36]

      (34) Notario, A.; Mellouki, A.; Le bras, G. Int. J. Chem. Kinet. 2000, 2, 105.


  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(2260)
  • Abstract views(2858)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return