Citation: ZHANG Qi-Bo, HUA Yi-Xin. Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 149-155. doi: 10.3866/PKU.WHXB20110126 shu

Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning

  • Received Date: 30 September 2010
    Available Online: 8 December 2010

    Fund Project: 国家自然科学基金(50864009, 50904031) (50864009, 50904031)高等学校博士学科点专项科研基金(20070674001)资助项目 (20070674001)

  • The effect of the ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO4) on the kinetics of oxygen evolution during zinc electrowinning from an acidic sulfate solution was investigated. We used potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction for this study. Potentiodynamic polarization curves and the corresponding kinetic parameter analysis show that [BMIM]HSO4 has a catalytic effect on oxygen evolution by stimulating the reaction rate constant. Impedance data reveal that [BMIM]HSO4 can markedly reduce the oxygen evolution charge transfer resistance. The addition of 5 mg·L-1 [BMIM]HSO4 obviously decreased the resistance value by at least 50% over the studied potential range from 1.85 to 2.10 V. In addition, the results of the impedance measurements also suggest an inhibition effect of [BMIM]HSO4 on the secondary reactions and this is due to the adsorption of the additive on the anode surface, which decreased the amount of active sites for anion adsorption. All electrochemical results were corroborated with a morphological and orientation analysis of the anodic surface after 120 h of anodic polarization. The addition of [BMIM]HSO4 inhibited the generation of the intermediate product β-PbO2 and it promoted the generation of larger, loose, and porous α-PbO2, which benefited the oxygen evolution reaction.

  • 加载中
    1. [1]

      1 Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, S.; Kounchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S.; Georgieva, L.; Buttinelli, D. Hydrometallurgy, 1996, 40: 293

    2. [2]

      2 Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.; Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy, 2000, 57: 109

    3. [3]

      3 Felder, A.; Prengaman, R. D. Journal of the Minerals, Metals and Material Society, 2006, 58: 28

    4. [4]

      4 Jiang, L. X.; Zhong, S. P.; Lai, Y. Q.; Lü, X. J.; Hong, B.; Peng, H. J.; Zhou, X. Y.; Li, J.; Liu, Y. X. Acta Phys. -Chim. Sin., 2010, 26: 2369

    5. [5]

      [蒋良兴, 衷水平, 赖延清, 吕晓军, 洪波, 彭红建, 周向阳, 李劼, 刘业翔. 物理化学学报, 2010, 26: 2369]

    6. [6]

      5 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 73

    7. [7]

      6 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 81

    8. [8]

      7 Pavlov, D.; Rogachev, T. Electrochim. Acta, 1986, 31: 241

    9. [9]

      8 Rashkov, S.; Dobrev, T.; Noncheva, Z.; Stefanov, Y.; Rashkova, B.; Petrova, M. Hydrometallurgy, 1999, 52: 223

    10. [10]

      9 Lupi, C.; Pilone, D. Hydrometallurgy, 1997, 44: 347

    11. [11]

      10 Siegmund, A.; Prengaman, R. D.; Dutrizac, J. E. Lead-Zinc 2000

    12. [12]

      [C].//Dutrizac, J. E.Warrendale. PA: TMS, 2000: 589-597

    13. [13]

      11 Newnham, R. H. J. Appl. Electrochem., 1992, 22: 116

    14. [14]

      12 Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Tian, Z. L.; Li, J.; Liu, Y. X. Chin. J. Process Eng., 2008, 8: 289

    15. [15]

      [衷水平, 赖延清, 蒋良兴, 田忠良, 李劫, 刘业翔. 过程工程学报, 2008, 8: 289]

    16. [16]

      13 Lai, Y. Q.; Zhong, S. P.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.; Liu, Y. X. J. Cent. South Uuiv. Tech., 2009, 16: 236

    17. [17]

      14 Petrova, M.; Stefanov, Y.; Noncheva, Z.; Dobrev, T.; Rashkov, S. British Corrosion Journal, 1999, 34: 198

    18. [18]

      15 Pavlov, D. Electrochim. Acta, 1978, 23: 845

    19. [19]

      16 Pavlov, D.; Dinev, Z. J. Electrochem. Soc., 1980, 127: 855

    20. [20]

      17 Yamamoto, Y.; Fumino, K.; Ueda, T.; Nambu, M. Electrochim. Acta, 1992, 37: 199

    21. [21]

      18 Ruetchi, P.; Cahan, B. D. J. Electrochem. Soc., 1957, 104: 406

    22. [22]

      19 Burbank, J. J. Electrochem. Soc., 1959, 106: 369

    23. [23]

      20 Paunovic, M.; Schlesinger, M. Fundamental of electrochemical deposition. 2nd ed. New York: JohnWilley & Sons Inc. Publication, 2006: 177-198

    24. [24]

      21 Saba, A. E.; Elsherief, A. E. Hydrometallurgy, 2000, 54: 91

    25. [25]

      22 Afifi, S. E.; Ebraid, A. R. Journal of the Minerals, 1992, 1: 32

    26. [26]

      23 Chapman, T.W.; Yen, S. C. Anode depolarisation in electrowinning

    27. [27]

      [C]. AIME Meeting, Las Vegas, No., 1980

    28. [28]

      24 2 Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem., 2009, 39: 261

    29. [29]

      25 Zhang, Q. B.; Hua, Y. X.;Wang, Y. T.; Lu, H. J.; Zhang, X. Y. Hydrometallurgy, 2009, 98: 291

    30. [30]

      26 Whitehead, J. A.; Lawrance, G. A.; McCluskey, A. Aust. J. Chem., 2004, 57: 151

    31. [31]

      27 Rerolle, C.;Wiart, R. Electrochim. Acta, 1995, 40: 939

    32. [32]

      28 Cachet, C.; Rerolle, C.;Wiart, R. Electrochim. Acta, 1996, 41: 83

    33. [33]

      29 Cachet, C.; Pape-Rerolle, C. L. E.;Wiart, R. J. Appl. Electrochem., 1999, 29: 813

    34. [34]

      30 Berube, L. P.; Piron, D. J. Electrochem. Soc., 1987, 134: 562

    35. [35]

      31 Katz, E. R.; Stucki, S. J. Electroanal. Chem., 1987, 228: 407

    36. [36]

      32 Ruetschi, P.; Cahan, B. D. J. Electrochem. Soc., 1958, 105: 369

    37. [37]

      33 Lappe, F. J. Phys. Chem. Solid., 1962, 23: 1563


  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    14. [14]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(1387)
  • Abstract views(3136)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return