Citation: ZHANG Qi-Bo, HUA Yi-Xin. Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 149-155. doi: 10.3866/PKU.WHXB20110126 shu

Effect of the Ionic Liquid Additive-[BMIM]HSO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning

  • Received Date: 30 September 2010
    Available Online: 8 December 2010

    Fund Project: 国家自然科学基金(50864009, 50904031) (50864009, 50904031)高等学校博士学科点专项科研基金(20070674001)资助项目 (20070674001)

  • The effect of the ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO4) on the kinetics of oxygen evolution during zinc electrowinning from an acidic sulfate solution was investigated. We used potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction for this study. Potentiodynamic polarization curves and the corresponding kinetic parameter analysis show that [BMIM]HSO4 has a catalytic effect on oxygen evolution by stimulating the reaction rate constant. Impedance data reveal that [BMIM]HSO4 can markedly reduce the oxygen evolution charge transfer resistance. The addition of 5 mg·L-1 [BMIM]HSO4 obviously decreased the resistance value by at least 50% over the studied potential range from 1.85 to 2.10 V. In addition, the results of the impedance measurements also suggest an inhibition effect of [BMIM]HSO4 on the secondary reactions and this is due to the adsorption of the additive on the anode surface, which decreased the amount of active sites for anion adsorption. All electrochemical results were corroborated with a morphological and orientation analysis of the anodic surface after 120 h of anodic polarization. The addition of [BMIM]HSO4 inhibited the generation of the intermediate product β-PbO2 and it promoted the generation of larger, loose, and porous α-PbO2, which benefited the oxygen evolution reaction.

  • 加载中
    1. [1]

      1 Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, S.; Kounchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S.; Georgieva, L.; Buttinelli, D. Hydrometallurgy, 1996, 40: 293

    2. [2]

      2 Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.; Mirkova, L.; Vermeersch, R.; Demaerel, J. P. Hydrometallurgy, 2000, 57: 109

    3. [3]

      3 Felder, A.; Prengaman, R. D. Journal of the Minerals, Metals and Material Society, 2006, 58: 28

    4. [4]

      4 Jiang, L. X.; Zhong, S. P.; Lai, Y. Q.; Lü, X. J.; Hong, B.; Peng, H. J.; Zhou, X. Y.; Li, J.; Liu, Y. X. Acta Phys. -Chim. Sin., 2010, 26: 2369

    5. [5]

      [蒋良兴, 衷水平, 赖延清, 吕晓军, 洪波, 彭红建, 周向阳, 李劼, 刘业翔. 物理化学学报, 2010, 26: 2369]

    6. [6]

      5 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 73

    7. [7]

      6 Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lü, X. J.; Peng, H. J.; Liu, Y. X. Hydrometallurgy, 2010, 102: 81

    8. [8]

      7 Pavlov, D.; Rogachev, T. Electrochim. Acta, 1986, 31: 241

    9. [9]

      8 Rashkov, S.; Dobrev, T.; Noncheva, Z.; Stefanov, Y.; Rashkova, B.; Petrova, M. Hydrometallurgy, 1999, 52: 223

    10. [10]

      9 Lupi, C.; Pilone, D. Hydrometallurgy, 1997, 44: 347

    11. [11]

      10 Siegmund, A.; Prengaman, R. D.; Dutrizac, J. E. Lead-Zinc 2000

    12. [12]

      [C].//Dutrizac, J. E.Warrendale. PA: TMS, 2000: 589-597

    13. [13]

      11 Newnham, R. H. J. Appl. Electrochem., 1992, 22: 116

    14. [14]

      12 Zhong, S. P.; Lai, Y. Q.; Jiang, L. X.; Tian, Z. L.; Li, J.; Liu, Y. X. Chin. J. Process Eng., 2008, 8: 289

    15. [15]

      [衷水平, 赖延清, 蒋良兴, 田忠良, 李劫, 刘业翔. 过程工程学报, 2008, 8: 289]

    16. [16]

      13 Lai, Y. Q.; Zhong, S. P.; Jiang, L. X.; Lü, X. J.; Chen, P. R.; Li, J.; Liu, Y. X. J. Cent. South Uuiv. Tech., 2009, 16: 236

    17. [17]

      14 Petrova, M.; Stefanov, Y.; Noncheva, Z.; Dobrev, T.; Rashkov, S. British Corrosion Journal, 1999, 34: 198

    18. [18]

      15 Pavlov, D. Electrochim. Acta, 1978, 23: 845

    19. [19]

      16 Pavlov, D.; Dinev, Z. J. Electrochem. Soc., 1980, 127: 855

    20. [20]

      17 Yamamoto, Y.; Fumino, K.; Ueda, T.; Nambu, M. Electrochim. Acta, 1992, 37: 199

    21. [21]

      18 Ruetchi, P.; Cahan, B. D. J. Electrochem. Soc., 1957, 104: 406

    22. [22]

      19 Burbank, J. J. Electrochem. Soc., 1959, 106: 369

    23. [23]

      20 Paunovic, M.; Schlesinger, M. Fundamental of electrochemical deposition. 2nd ed. New York: JohnWilley & Sons Inc. Publication, 2006: 177-198

    24. [24]

      21 Saba, A. E.; Elsherief, A. E. Hydrometallurgy, 2000, 54: 91

    25. [25]

      22 Afifi, S. E.; Ebraid, A. R. Journal of the Minerals, 1992, 1: 32

    26. [26]

      23 Chapman, T.W.; Yen, S. C. Anode depolarisation in electrowinning

    27. [27]

      [C]. AIME Meeting, Las Vegas, No., 1980

    28. [28]

      24 2 Zhang, Q. B.; Hua, Y. X. J. Appl. Electrochem., 2009, 39: 261

    29. [29]

      25 Zhang, Q. B.; Hua, Y. X.;Wang, Y. T.; Lu, H. J.; Zhang, X. Y. Hydrometallurgy, 2009, 98: 291

    30. [30]

      26 Whitehead, J. A.; Lawrance, G. A.; McCluskey, A. Aust. J. Chem., 2004, 57: 151

    31. [31]

      27 Rerolle, C.;Wiart, R. Electrochim. Acta, 1995, 40: 939

    32. [32]

      28 Cachet, C.; Rerolle, C.;Wiart, R. Electrochim. Acta, 1996, 41: 83

    33. [33]

      29 Cachet, C.; Pape-Rerolle, C. L. E.;Wiart, R. J. Appl. Electrochem., 1999, 29: 813

    34. [34]

      30 Berube, L. P.; Piron, D. J. Electrochem. Soc., 1987, 134: 562

    35. [35]

      31 Katz, E. R.; Stucki, S. J. Electroanal. Chem., 1987, 228: 407

    36. [36]

      32 Ruetschi, P.; Cahan, B. D. J. Electrochem. Soc., 1958, 105: 369

    37. [37]

      33 Lappe, F. J. Phys. Chem. Solid., 1962, 23: 1563


  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    3. [3]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(1387)
  • Abstract views(3187)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return