Citation: XIE Juan, WANG Hu, DUAN Ming. Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 193-198. doi: 10.3866/PKU.WHXB20110124 shu

Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties

  • Received Date: 27 July 2010
    Available Online: 8 December 2010

    Fund Project: 油气藏地质及开发工程国家重点实验室开放基金(西南石油大学)(PLN0805)资助项目 (西南石油大学)(PLN0805)

  • Self-assembled ZnO thin films with controlled sizes were successfully prepared by varying the processing parameters. The films have a photonic band gap, which extends the absorption range to the visible light region. The photocatalytic activities of the ZnO thin films were evaluated by the degradation of methyl orange (MO). The crystal structure of ZnO was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the ZnO thin films exhibit od photocatalytic activities under sunlight. Furthermore, the photocatalytic activities of the ZnO thin films were highly dependent on sphere size. With an increase in ZnO sphere size, the degradation efficiency toward MO decreased. The photodegradation can be described using a pseudo-first-order kinetics equation.

  • 加载中
    1. [1]

      1 Karunakaran, C.; Dhanalakshmi, R. Radiat. Phys. Chem., 2009, 78: 8

    2. [2]

      2 Lu, H. M.; Takata, T.; Lee, Y. Chem. Mater., 2004, 16: 846

    3. [3]

      3 Liao, D. L.; Badour, C. A.; Liao, B. Q. J. Photoch. Photobio. A, 2008, 194(1): 11

    4. [4]

      4 Hu, J. Q.; Bando, Y. Appl. Phys. Lett., 2003, 82: 1401

    5. [5]

      5 Su, C.; Hong, B. Y.; Tseng, C. M. Catal. Today, 2004, 96: 119

    6. [6]

      6 Kansal, S. K.; Singh, M.; Sud, D. J. Hazard. Mater., 2008, 153: 412

    7. [7]

      7 Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Poulios, I.; Albanis, T. Catal. Today, 2007, 124: 156

    8. [8]

      8 Karunakaran, C.; Dhanalakshmi, R. Sol. Energ. Mat. Sol. C, 2008, 92: 1315

    9. [9]

      9 Zhang, J. H.; Xiao, X.; Nan, J. M. J. Hazard. Mater., 2010, 176: 617

    10. [10]

      10 Sun, X. M.; Deng, Z. X.; Li, Y. D. Mater. Chem. Phys., 2003, 80: 366

    11. [11]

      11 Gao, P. X.;Wang, Z. L. J. Am. Chem. Soc., 2003, 125: 11299

    12. [12]

      12 Zhai, X. H; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin., 2010, 26: 663

    13. [13]

      [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26: 663]

    14. [14]

      13 Devi, L. G.; Reddy, K. M. Appl. Surf. Sci., 2010, 256: 3116

    15. [15]

      14 Nguyen-Phan, T. D.; Pham, V. H.; Cuong, T. V.; Hahn, S. H.; Kim, E. J.; Chung, J. S.; Hur, S. H.; Shin, E.W. Mater. Lett., 2010, 64: 1387

    16. [16]

      15 Zhang, Y. R.;Wan, J.; Ke, Y. Q. J. Hazard. Mater., 2010, 177: 750

    17. [17]

      16 Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere, 2010, 78: 1350

    18. [18]

      17 Vayssieres, L. Adv. Mater., 2003, 15(5): 464

    19. [19]

      18 Ullah, R.; Dutta, J. J. Hazard. Mater., 2008, 156: 194

    20. [20]

      19 Xie, J. S.;Wu, Q. S. Mater. Lett., 2010, 64: 389

    21. [21]

      20 Sobana, N.; Swaminathan, M. Sol. Energ. Mat. Sol. C, 2007, 91: 727

    22. [22]

      21 Daneshvar, N.; Aber, S.; Seyed Dorraji, M. S.; Khataee, A. R.; Rasoulifard, M. H. Sep. Purif. Technol., 2007, 58: 91

    23. [23]

      22 Liu, Z. L.; Deng, J. C.; Deng, J. J.; Li, F. F. Mat. Sci. Eng. B-Solid, 2008, 150: 99

    24. [24]

      23 Xie, J.; Deng, H.; Xu, Z. Q.; Li, Y.; Huang, J. J. Cryst. Growth, 2006, 292: 227

    25. [25]

      24 Wang, H.; Yan, K. P.; Xie, J.; Duan, M. Mat. Sci. Semicon. Proc., 2008, 11: 44

    26. [26]

      25 Yang, H. Q.; Li, L.; Song, Y. Z.; He, P.; Yang,W. Y.; Ma, J. H.; Chen, D. C.; Fang, Y. Sci. China Ser. B, 2007, 37:418

    27. [27]

      [杨合情, 李丽, 宋玉哲, 贺萍, 杨文玉, 马军虎, 陈迪春, 房喻. 中国科学B: 化学, 2007, 37:418]

    28. [28]

      26 Yassitepe, E.; Yatmaz, H. C.; Ozturk, C.; Ozturk, K.; Duran, C. J. Photoch. Photobio. A, 2008, 198: 1

    29. [29]

      27 Rao, A. N.; Sivasankar, B.; Sadasivam, V. J. Hazard. Mater., 2009, 166: 1357


  • 加载中
    1. [1]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Huoshuai HuangZhidong WeiJiawei YanJiasheng ChiQianxiang SuMingxia ChenZhi JiangYangzhou SunWenfeng Shangguan . Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1−xS solid solution. Acta Physico-Chimica Sinica, 2026, 42(1): 100141-0. doi: 10.1016/j.actphy.2025.100141

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    11. [11]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(1583)
  • Abstract views(3091)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return