Citation: WANG Bin, DU Min, ZHANG Jing. Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 120-126. doi: 10.3866/PKU.WHXB20110117 shu

Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion

  • Received Date: 20 September 2010
    Available Online: 1 December 2010

    Fund Project: 国家自然科学基金(40806030)资助项目 (40806030)

  • We investigated the inhibition performance of a new imidazoline derivative inhibitor, TAI, which can be used as a gas-liquid two-phase inhibitor against CO2 corrosion by weight-loss method, electrochemical impedance spectroscopy (EIS), Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Results revealed that the thioureido imidazoline inhibitor was an effective inhibitor against CO2 corrosion in gas and liquid two phases. Surface analysis by AFM showed that damage to the metallic surface was considerably reduced in the presence of the TAI inhibitor. A bigger adhesive force between the AFM probe and the steel surface was detected owing to hydrophobic interaction from the inhibitors in the two phases. The long range-repulsive force between the AFM probe and the steel surface increased in gas phase but decreased in liquid phase by the screening effect of surface charges. XPS and FT-IR spectroscopy proved that the adsorption films on the metal surfaces with protective properties of TAI and acid hydrolysis products of the TAI (amides) were present in liquid phase and in gas phase, respectively. The above results further confirmed the hydrolysis mechanism of imidazoline derivatives in acid solution.

  • 加载中
    1. [1]

      1. Nesic, S.; Pots, B. F. M.; Postlethwaite, J.; Thevenot, N. J. Corr.Sci. Eng., 1996, 1: 3

    2. [2]

      2. Lopez, D. A.; Schreiner,W. H.; De Sanchez, S. R.; Simison, S. N.Appl. Surf. Sci., 2004, 236: 77

    3. [3]

      3. Zhang, X. Y.;Wang, F. P.; He, Y. F.; Du, Y. L. Corrosion Sci.,2001, 43: 1418

    4. [4]

      4. Nesic, S.; Nordsveen, M.; Maxwell, N.; Vrhovac, M. Corrosion Sci., 2001, 43: 1373

    5. [5]

      5. Amri, J.; Gulbrandsen, E.; Nogueira, R. P. Electrochem. Commun., 2008, 10: 200

    6. [6]

      6. Durnie,W. H.; Kinsella, B. J.; De Marco, R.; Jefferson, A. J. Appl. Electrochem., 2001, 31: 1221

    7. [7]

      7. Liu, X.; Okafor, P. C.; Zheng, Y. G. Corrosion Sci., 2009, 51: 744

    8. [8]

      8. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Acta Phys. -Chim. Sin., 2008, 24: 138.

    9. [9]

      [刘福国, 杜敏, 张静, 仇萌. 物理化学学报, 2008, 24: 138. ]

    10. [10]

      9. Song, F. M.; Kirk, D.W.; Graydon, J.W.; Cormack, D. E. Corrosion, 2004, 60: 736

    11. [11]

      10. Ramachandran, S.; Jovancicevic, V. Corrosion, 1999, 55: 259

    12. [12]

      11. Edwards, A.; Osborne, C.;Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M. Corrosion Sci., 1994, 36: 315

    13. [13]

      12. Jovancicevic, V.; Ramachandran, S.; Prince, P. Corrosion, 1999, 55: 449

    14. [14]

      13. Tan, Y. J.; Bailey, S.; Kinsella, B. Corrosion Sci.,1996, 38: 1545

    15. [15]

      14. Durnie,W.; De Marco, R.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc., 1999, 146: 1751

    16. [16]

      15. Popova, A.; Christor, M.; Raicheva, S.; Sokolova, E. Corrosion Sci., 2004, 46: 1333

    17. [17]

      16. Okafor, P. C.; Zheng, Y. G. Corrosion Sci.,2009, 51: 850

    18. [18]

      17. ASTM E 200-01, Standard practice for preparation, standardization and storage of standard and reagent solutions for chemical analysis, ASTM book of standards. Vol. 15.02.West Conshohocken, PA, 2001

    19. [19]

      18. ASTM G 01-03, Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards. Vol.3.02.West Conshohocken, PA, 2003

    20. [20]

      19. ASTM G 31-72, Standard practice for laboratory immersion corrosion testing of metals, ASTM Book of Standards. Vol.3.02. West Conshohocken, PA, 2004

    21. [21]

      20. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Corrosion Sci., 2009, 51: 102

    22. [22]

      21. Lopez, D. A.; Simison, S. N.; De Sanchez, S. R. Corrosion Sci.,2005, 47: 735

    23. [23]

      22. Khaled, K. F.; Hackerman, N. Electrochim. Acta, 2003, 48: 2715

    24. [24]

      23. Moretti, G.; Guidi, F.; Grion, G. Corrosion Sci., 2004, 46: 387

    25. [25]

      24. McCafferty, E.; Hackerman, N. J. Electrochem. Soc., 1972, 119:146

    26. [26]

      25. Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Lyer, S. V. K. J. Electrochem. Soc., 1995, 142: 1478

    27. [27]

      26. Limatibul, S.;Watson, J.W. J. Org. Chem., 1971, 36: 3803

    28. [28]

      27. Reese, S. R.; Fox, M. A. J. Phys. Chem. B, 1998, 102: 9820

    29. [29]

      28. Jakubowicz, A.; Jia, H.;Wallace, R. M.; Gnade, B. E. Langmuir,2005, 21: 950

    30. [30]

      29. Liu, X. Y.; Chen, S. H.; Ma, H. Y.; Liu, G. Z.; Shen, L. X. Appl.Surf. Sci., 2006, 253: 814

    31. [31]

      30. Wang, D. X.; Li, S. Y.; Yu, Y. Corrosion Sci., 1999, 41: 735

    32. [32]

      31. Olivares-Xometl, O.; Likhanova, N. V.; Dominguez-Aguilar, M.A.; Hallen, J. M.; Zamudio, L. S.; Arce, E. Appl. Surf. Sci., 2006,252: 2139

    33. [33]

      32. Weisenhorn, A. L.; Hansma, P. K. Appl. Phys. Lett., 1989, 54:2651

    34. [34]

      33. Ai, J. Z.; Guo, X. P.; Qu, J. E.; Chen, Z. Y.; Zheng, J. S. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 281: 147

    35. [35]

      34. Tsao, Y. H.; Evans, D. F.;Wennerstrom, H. Science, 1993, 262:547

    36. [36]

      35. Liu, X. Y.; Chen, S. H.; Zhai, H. Y.; Shen, L. X.; Zhou, J. J.;Wu,L. Electrochem. Commun., 2007, 9: 813

    37. [37]

      36. Auger and X-ray photoelectron spectroscopy, Vol.1.//Practical surface analysis. 2nd ed. Briggs, D.; Seah, M. P. Eds. Chichester, England: JohnWiley & Sons, 1990

    38. [38]

      37. Moulder, F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. Chaitain, J. Ed. Minnesota, USA: Perkin-Elmer Corp., 1992

    39. [39]

      38. NIST X-Ray photoelectron spectroscopy database, NIST standard reference database 20. Vol.1. Gaithersburg, USA, 1989

    40. [40]

      39. Sastri, V. S.; Elboujdaini, M.; Roma, J. R.; Perumareddi, J. R. Corrosion, 1996, 52: 447

    41. [41]

      40. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. J. Appl. Electrochem., 2003, 33: 361

    42. [42]

      41. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. Surf. Coat. Technol., 2010, 204: 1646


  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    20. [20]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

Metrics
  • PDF Downloads(1169)
  • Abstract views(2512)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return