Citation: WANG Bin, DU Min, ZHANG Jing. Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 120-126. doi: 10.3866/PKU.WHXB20110117 shu

Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion

  • Received Date: 20 September 2010
    Available Online: 1 December 2010

    Fund Project: 国家自然科学基金(40806030)资助项目 (40806030)

  • We investigated the inhibition performance of a new imidazoline derivative inhibitor, TAI, which can be used as a gas-liquid two-phase inhibitor against CO2 corrosion by weight-loss method, electrochemical impedance spectroscopy (EIS), Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Results revealed that the thioureido imidazoline inhibitor was an effective inhibitor against CO2 corrosion in gas and liquid two phases. Surface analysis by AFM showed that damage to the metallic surface was considerably reduced in the presence of the TAI inhibitor. A bigger adhesive force between the AFM probe and the steel surface was detected owing to hydrophobic interaction from the inhibitors in the two phases. The long range-repulsive force between the AFM probe and the steel surface increased in gas phase but decreased in liquid phase by the screening effect of surface charges. XPS and FT-IR spectroscopy proved that the adsorption films on the metal surfaces with protective properties of TAI and acid hydrolysis products of the TAI (amides) were present in liquid phase and in gas phase, respectively. The above results further confirmed the hydrolysis mechanism of imidazoline derivatives in acid solution.

  • 加载中
    1. [1]

      1. Nesic, S.; Pots, B. F. M.; Postlethwaite, J.; Thevenot, N. J. Corr.Sci. Eng., 1996, 1: 3

    2. [2]

      2. Lopez, D. A.; Schreiner,W. H.; De Sanchez, S. R.; Simison, S. N.Appl. Surf. Sci., 2004, 236: 77

    3. [3]

      3. Zhang, X. Y.;Wang, F. P.; He, Y. F.; Du, Y. L. Corrosion Sci.,2001, 43: 1418

    4. [4]

      4. Nesic, S.; Nordsveen, M.; Maxwell, N.; Vrhovac, M. Corrosion Sci., 2001, 43: 1373

    5. [5]

      5. Amri, J.; Gulbrandsen, E.; Nogueira, R. P. Electrochem. Commun., 2008, 10: 200

    6. [6]

      6. Durnie,W. H.; Kinsella, B. J.; De Marco, R.; Jefferson, A. J. Appl. Electrochem., 2001, 31: 1221

    7. [7]

      7. Liu, X.; Okafor, P. C.; Zheng, Y. G. Corrosion Sci., 2009, 51: 744

    8. [8]

      8. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Acta Phys. -Chim. Sin., 2008, 24: 138.

    9. [9]

      [刘福国, 杜敏, 张静, 仇萌. 物理化学学报, 2008, 24: 138. ]

    10. [10]

      9. Song, F. M.; Kirk, D.W.; Graydon, J.W.; Cormack, D. E. Corrosion, 2004, 60: 736

    11. [11]

      10. Ramachandran, S.; Jovancicevic, V. Corrosion, 1999, 55: 259

    12. [12]

      11. Edwards, A.; Osborne, C.;Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M. Corrosion Sci., 1994, 36: 315

    13. [13]

      12. Jovancicevic, V.; Ramachandran, S.; Prince, P. Corrosion, 1999, 55: 449

    14. [14]

      13. Tan, Y. J.; Bailey, S.; Kinsella, B. Corrosion Sci.,1996, 38: 1545

    15. [15]

      14. Durnie,W.; De Marco, R.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc., 1999, 146: 1751

    16. [16]

      15. Popova, A.; Christor, M.; Raicheva, S.; Sokolova, E. Corrosion Sci., 2004, 46: 1333

    17. [17]

      16. Okafor, P. C.; Zheng, Y. G. Corrosion Sci.,2009, 51: 850

    18. [18]

      17. ASTM E 200-01, Standard practice for preparation, standardization and storage of standard and reagent solutions for chemical analysis, ASTM book of standards. Vol. 15.02.West Conshohocken, PA, 2001

    19. [19]

      18. ASTM G 01-03, Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards. Vol.3.02.West Conshohocken, PA, 2003

    20. [20]

      19. ASTM G 31-72, Standard practice for laboratory immersion corrosion testing of metals, ASTM Book of Standards. Vol.3.02. West Conshohocken, PA, 2004

    21. [21]

      20. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Corrosion Sci., 2009, 51: 102

    22. [22]

      21. Lopez, D. A.; Simison, S. N.; De Sanchez, S. R. Corrosion Sci.,2005, 47: 735

    23. [23]

      22. Khaled, K. F.; Hackerman, N. Electrochim. Acta, 2003, 48: 2715

    24. [24]

      23. Moretti, G.; Guidi, F.; Grion, G. Corrosion Sci., 2004, 46: 387

    25. [25]

      24. McCafferty, E.; Hackerman, N. J. Electrochem. Soc., 1972, 119:146

    26. [26]

      25. Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Lyer, S. V. K. J. Electrochem. Soc., 1995, 142: 1478

    27. [27]

      26. Limatibul, S.;Watson, J.W. J. Org. Chem., 1971, 36: 3803

    28. [28]

      27. Reese, S. R.; Fox, M. A. J. Phys. Chem. B, 1998, 102: 9820

    29. [29]

      28. Jakubowicz, A.; Jia, H.;Wallace, R. M.; Gnade, B. E. Langmuir,2005, 21: 950

    30. [30]

      29. Liu, X. Y.; Chen, S. H.; Ma, H. Y.; Liu, G. Z.; Shen, L. X. Appl.Surf. Sci., 2006, 253: 814

    31. [31]

      30. Wang, D. X.; Li, S. Y.; Yu, Y. Corrosion Sci., 1999, 41: 735

    32. [32]

      31. Olivares-Xometl, O.; Likhanova, N. V.; Dominguez-Aguilar, M.A.; Hallen, J. M.; Zamudio, L. S.; Arce, E. Appl. Surf. Sci., 2006,252: 2139

    33. [33]

      32. Weisenhorn, A. L.; Hansma, P. K. Appl. Phys. Lett., 1989, 54:2651

    34. [34]

      33. Ai, J. Z.; Guo, X. P.; Qu, J. E.; Chen, Z. Y.; Zheng, J. S. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 281: 147

    35. [35]

      34. Tsao, Y. H.; Evans, D. F.;Wennerstrom, H. Science, 1993, 262:547

    36. [36]

      35. Liu, X. Y.; Chen, S. H.; Zhai, H. Y.; Shen, L. X.; Zhou, J. J.;Wu,L. Electrochem. Commun., 2007, 9: 813

    37. [37]

      36. Auger and X-ray photoelectron spectroscopy, Vol.1.//Practical surface analysis. 2nd ed. Briggs, D.; Seah, M. P. Eds. Chichester, England: JohnWiley & Sons, 1990

    38. [38]

      37. Moulder, F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. Chaitain, J. Ed. Minnesota, USA: Perkin-Elmer Corp., 1992

    39. [39]

      38. NIST X-Ray photoelectron spectroscopy database, NIST standard reference database 20. Vol.1. Gaithersburg, USA, 1989

    40. [40]

      39. Sastri, V. S.; Elboujdaini, M.; Roma, J. R.; Perumareddi, J. R. Corrosion, 1996, 52: 447

    41. [41]

      40. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. J. Appl. Electrochem., 2003, 33: 361

    42. [42]

      41. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. Surf. Coat. Technol., 2010, 204: 1646


  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    18. [18]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    19. [19]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    20. [20]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

Metrics
  • PDF Downloads(1169)
  • Abstract views(2454)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return