Citation: WANG Bin, DU Min, ZHANG Jing. Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 120-126. doi: 10.3866/PKU.WHXB20110117
-
We investigated the inhibition performance of a new imidazoline derivative inhibitor, TAI, which can be used as a gas-liquid two-phase inhibitor against CO2 corrosion by weight-loss method, electrochemical impedance spectroscopy (EIS), Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Results revealed that the thioureido imidazoline inhibitor was an effective inhibitor against CO2 corrosion in gas and liquid two phases. Surface analysis by AFM showed that damage to the metallic surface was considerably reduced in the presence of the TAI inhibitor. A bigger adhesive force between the AFM probe and the steel surface was detected owing to hydrophobic interaction from the inhibitors in the two phases. The long range-repulsive force between the AFM probe and the steel surface increased in gas phase but decreased in liquid phase by the screening effect of surface charges. XPS and FT-IR spectroscopy proved that the adsorption films on the metal surfaces with protective properties of TAI and acid hydrolysis products of the TAI (amides) were present in liquid phase and in gas phase, respectively. The above results further confirmed the hydrolysis mechanism of imidazoline derivatives in acid solution.
-
-
[1]
1. Nesic, S.; Pots, B. F. M.; Postlethwaite, J.; Thevenot, N. J. Corr.Sci. Eng., 1996, 1: 3
-
[2]
2. Lopez, D. A.; Schreiner,W. H.; De Sanchez, S. R.; Simison, S. N.Appl. Surf. Sci., 2004, 236: 77
-
[3]
3. Zhang, X. Y.;Wang, F. P.; He, Y. F.; Du, Y. L. Corrosion Sci.,2001, 43: 1418
-
[4]
4. Nesic, S.; Nordsveen, M.; Maxwell, N.; Vrhovac, M. Corrosion Sci., 2001, 43: 1373
-
[5]
5. Amri, J.; Gulbrandsen, E.; Nogueira, R. P. Electrochem. Commun., 2008, 10: 200
-
[6]
6. Durnie,W. H.; Kinsella, B. J.; De Marco, R.; Jefferson, A. J. Appl. Electrochem., 2001, 31: 1221
-
[7]
7. Liu, X.; Okafor, P. C.; Zheng, Y. G. Corrosion Sci., 2009, 51: 744
-
[8]
8. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Acta Phys. -Chim. Sin., 2008, 24: 138.
-
[9]
[刘福国, 杜敏, 张静, 仇萌. 物理化学学报, 2008, 24: 138. ]
-
[10]
9. Song, F. M.; Kirk, D.W.; Graydon, J.W.; Cormack, D. E. Corrosion, 2004, 60: 736
-
[11]
10. Ramachandran, S.; Jovancicevic, V. Corrosion, 1999, 55: 259
-
[12]
11. Edwards, A.; Osborne, C.;Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M. Corrosion Sci., 1994, 36: 315
-
[13]
12. Jovancicevic, V.; Ramachandran, S.; Prince, P. Corrosion, 1999, 55: 449
-
[14]
13. Tan, Y. J.; Bailey, S.; Kinsella, B. Corrosion Sci.,1996, 38: 1545
-
[15]
14. Durnie,W.; De Marco, R.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc., 1999, 146: 1751
-
[16]
15. Popova, A.; Christor, M.; Raicheva, S.; Sokolova, E. Corrosion Sci., 2004, 46: 1333
-
[17]
16. Okafor, P. C.; Zheng, Y. G. Corrosion Sci.,2009, 51: 850
-
[18]
17. ASTM E 200-01, Standard practice for preparation, standardization and storage of standard and reagent solutions for chemical analysis, ASTM book of standards. Vol. 15.02.West Conshohocken, PA, 2001
-
[19]
18. ASTM G 01-03, Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards. Vol.3.02.West Conshohocken, PA, 2003
-
[20]
19. ASTM G 31-72, Standard practice for laboratory immersion corrosion testing of metals, ASTM Book of Standards. Vol.3.02. West Conshohocken, PA, 2004
-
[21]
20. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Corrosion Sci., 2009, 51: 102
-
[22]
21. Lopez, D. A.; Simison, S. N.; De Sanchez, S. R. Corrosion Sci.,2005, 47: 735
-
[23]
22. Khaled, K. F.; Hackerman, N. Electrochim. Acta, 2003, 48: 2715
-
[24]
23. Moretti, G.; Guidi, F.; Grion, G. Corrosion Sci., 2004, 46: 387
-
[25]
24. McCafferty, E.; Hackerman, N. J. Electrochem. Soc., 1972, 119:146
-
[26]
25. Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Lyer, S. V. K. J. Electrochem. Soc., 1995, 142: 1478
-
[27]
26. Limatibul, S.;Watson, J.W. J. Org. Chem., 1971, 36: 3803
-
[28]
27. Reese, S. R.; Fox, M. A. J. Phys. Chem. B, 1998, 102: 9820
-
[29]
28. Jakubowicz, A.; Jia, H.;Wallace, R. M.; Gnade, B. E. Langmuir,2005, 21: 950
-
[30]
29. Liu, X. Y.; Chen, S. H.; Ma, H. Y.; Liu, G. Z.; Shen, L. X. Appl.Surf. Sci., 2006, 253: 814
-
[31]
30. Wang, D. X.; Li, S. Y.; Yu, Y. Corrosion Sci., 1999, 41: 735
-
[32]
31. Olivares-Xometl, O.; Likhanova, N. V.; Dominguez-Aguilar, M.A.; Hallen, J. M.; Zamudio, L. S.; Arce, E. Appl. Surf. Sci., 2006,252: 2139
-
[33]
32. Weisenhorn, A. L.; Hansma, P. K. Appl. Phys. Lett., 1989, 54:2651
-
[34]
33. Ai, J. Z.; Guo, X. P.; Qu, J. E.; Chen, Z. Y.; Zheng, J. S. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 281: 147
-
[35]
34. Tsao, Y. H.; Evans, D. F.;Wennerstrom, H. Science, 1993, 262:547
-
[36]
35. Liu, X. Y.; Chen, S. H.; Zhai, H. Y.; Shen, L. X.; Zhou, J. J.;Wu,L. Electrochem. Commun., 2007, 9: 813
-
[37]
36. Auger and X-ray photoelectron spectroscopy, Vol.1.//Practical surface analysis. 2nd ed. Briggs, D.; Seah, M. P. Eds. Chichester, England: JohnWiley & Sons, 1990
-
[38]
37. Moulder, F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. Chaitain, J. Ed. Minnesota, USA: Perkin-Elmer Corp., 1992
-
[39]
38. NIST X-Ray photoelectron spectroscopy database, NIST standard reference database 20. Vol.1. Gaithersburg, USA, 1989
-
[40]
39. Sastri, V. S.; Elboujdaini, M.; Roma, J. R.; Perumareddi, J. R. Corrosion, 1996, 52: 447
-
[41]
40. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. J. Appl. Electrochem., 2003, 33: 361
-
[42]
41. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. Surf. Coat. Technol., 2010, 204: 1646
-
[1]
-
-
[1]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[2]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[5]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[6]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[7]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[8]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[9]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[10]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[11]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[12]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[13]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[14]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[15]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[18]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[19]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[20]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[1]
Metrics
- PDF Downloads(1169)
- Abstract views(2454)
- HTML views(24)