Citation:
CUI Wen-Yu, AN Mao-Zhong, YANG Pei-Xia, ZHANG Jin-Qiu. Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 78-84.
doi:
10.3866/PKU.WHXB20110112
-
We report on a composite polymer electrolyte containing the ionic liquid 1-ethyl-3- methylimidazolium hexafluorophosphate (EMIPF6). This composite polymer electrolyte is based on the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) polymer matrix and is a potential electrolyte for use in lithium ion batteries. The ionic conductivity of the composite polymer electrolyte was measured by electrochemical impedance spectroscopy (EIS). Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte. The thermal properties for the composite polymer electrolyte were also characterized by thermogravimetry (TG) and by a flammability test. The results show that the presence of the EMIPF6 ionic liquid increases the ion transport properties greatly but a better cathodic stability is only obtained by the addition of organic additives such as ethylene carbonate-propylene carbonate (EC-PC), which extends the cathodic stability to 0.3 V. This corresponds to an electrochemical stability window of 0.3-4.3 V. The selected Li4Ti5O12 anode and LiCoO2 cathode materials exhibit acceptable electrochemical performance in combination with the prepared P(VdF-HFP)/ LiPF6/EMIPF6/EC-PC composite polymer electrolyte. At a charge-discharge rate of 0.1C, Li/LiCoO2 and Li/ Li4Ti5O12 have reversible capacities of 130 and 144 mAh·g-1, respectively. However, the corresponding thermal performance is suppressed because of the presence of organic additives.
-
-
-
[1]
1. Sung, M. G.; Hattori, K.; Asai, S. Materials and Design, 2009, 30: 387
-
[2]
2. Song, J. Y.;Wang, Y. Y.;Wan, C. C. J. Power Sources, 1999, 7: 183
-
[3]
3. Alper, J. Science, 2002, 296: 1224
-
[4]
4. Scrosati, B.; Croce, F.; Persi, L. J. Electrochem. Soc., 2000, 147: 1. 718
-
[5]
5. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature, 1998: 456
-
[6]
6. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B, 1999, 103: 10632
-
[7]
7. Wieczoreck,W.; Lipka, P.; Zukowska, G.;Wycislik, H. J. Phys. Chem., 1998, 102: 6968
-
[8]
8. Saito, Y.; Stephan, M.; Kataoka, H. Solid State Ionics, 2003, 16: 149
-
[9]
9. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R. Electrochim. Acta, 1995, 40: 2339
-
[10]
10. Adebahr, J.; Forsyth, M.; MacFarlane, D. R.; Gavelin, P.; Jacobsson, P. Solid State Ionics, 2002, 14: 303
-
[11]
11. Noda, A.; Hayamizu, K.;Watanabe, M. J. Phys. Chem. B, 2001, 105: 4603
-
[12]
12. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2004, 108: 16593
-
[13]
13. Shin, J. H.; Henderson,W. A.; Passerini, S. Electrochem. Commun., 2003, 5: 1016
-
[14]
14. Shin, J. H.; Henderson,W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Electrochim. Acta, 2005, 5: 3859
-
[15]
15. Cheng, H.; Zhu, C.; Huang, B.; Lu, M.; Yang, Y. Electrochim. Acta, 2007, 52: 5789
-
[16]
16. Fortunato, R.; Branco, L. C. C.; Afonso, A. M.; Benavente, J.; Crespo, J. G. J. Membrane Science, 2006, 270: 42
-
[17]
17. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electrochem. Soc., 1997, 144: L67
-
[18]
18. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electroanal. Chem., 1998,459: 29
-
[19]
19. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem., 2003, 120: 135
-
[20]
20. Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Fluorine Chem., 1999, 99: 1
-
[21]
21. Matsumoto, H.; Miyazakj, Y. Chem. Lett., 2000: 922
-
[22]
22. Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem., 1996, 35: 1168
-
[23]
23. Ye, H.; Huang, J.; Xu, J. J.; Khalfan, A.; Greenbaum, S. G. J. Electrochem. Soc., 2007, 154: A1048
-
[24]
24. Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer, 1987, 28: 2324
-
[25]
25. Zhang, S. M.; Hou, Y.W.; Huang,W. G.; Shan, Y. K. Electrochim. Acta, 2005, 50: 4097
-
[26]
26. Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. J. Power Sources, 2006, 155: 385
-
[27]
27. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2005, 109: 6103
-
[28]
28. Botte, G. G.; White, R. E.; Zhang, Z. M. J. Power Sources, 2001, 97-98: 570
-
[29]
29. Wang, Q. S.; Sun, J. H.; Yao, X. L.; Chen, C. H. Journal of Loss Prevention in the Process Industries, 2006, 19: 561
-
[30]
30. Saikia, D.; Kumar, A. Electrochim. Acta, 2004, 49: 2581
-
[1]
-
-
-
[1]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[2]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[3]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[6]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[7]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[10]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[11]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[12]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[13]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[14]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[18]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[19]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[20]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[1]
Metrics
- PDF Downloads(1707)
- Abstract views(2981)
- HTML views(86)