Citation: WANG Xi-Zhao, ZHENG Jun-Sheng, FU Rong, MA Jian-Xin. Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 85-90. doi: 10.3866/PKU.WHXB20110111 shu

Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity

  • Received Date: 19 July 2010
    Available Online: 24 November 2010

    Fund Project: 国家自然科学基金(21006073) (21006073) 上海市重点学科项目(B303) (B303)博士后科学基金(20080440645, 200902250)资助 (20080440645, 200902250)

  • We prepared a Pt/C catalyst for use in proton exchange membrane fuel cells (PEMFCs) by pulse-microwave assisted chemical reduction synthesis. The microstructure and morphology of the as-prepared catalyst was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The catalyst's electrocatalytic performance in the oxygen reduction reaction (ORR) was measured by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and constant potential polarization. The results indicate that pulse-microwave assisted chemical reduction synthesis is an efficient method to prepare PEMFC catalysts and that the pH and the microwave power largely influence the size and dispersion of Pt nanoparticles. At pH 10 and at a microwave power of 2 kW, the Pt nanoparticles were found to be uniform in size and the Pt nanoparticles size ranged between 1.3 and 2.4 nm with an average size of 1.8 nm. Additionally, the Pt nanoparticles were found to be highly dispersed on the surface of the carbon support. The electrochemical measurements showed that the electrochemical surface area (ESA) of the catalyst was 55.6 m2·g-1 and the catalyst exhibited superior performance and stability in the ORR. The maximum power density of the single cell was 2.26 W·cm-2·mg-1 for the catalyst prepared at a microwave power of 2 kW and a pH of 10 as the cathode material. The maximum power density was higher than that of the catalyst prepared using a microwave power of 1 kW (2.15 W·cm-2·mg-1) and also higher than that of the catalyst from Johnson Matthey (1.89 W·cm-2·mg-1).

  • 加载中
    1. [1]

      1. Jia, Y. Q.;Wang, H.W. J. Power Sources, 2006, 155: 3192

    2. [2]

      2. Appleby, A. J.; ulkes, F. R. Fuel cell handbook. New York: van Nostrand Reinhold, 1989: 12-284

    3. [3]

      3. Kazim, M. Int. J. Energy Convers. Mgmt., 2000, 42: 7634

    4. [4]

      4. Dyer, C. K. J. Power Sources, 2002, 106: 31

    5. [5]

      5. Ahmadi, T. S.;Wang, Z. L.; Green, T. C.; Henglein, A.; EI-Sayed, M. A. Science, 1996, 272: 1924

    6. [6]

      6. Deivaraj T. C.; Lee J. Y. J. Power Sources, 2005, 142: 43

    7. [7]

      7. Park G. G.; Yang T. H.; Yoon Y. G.; LeeW. Y.; Kim C. S. Int. J. Hydrog. Energy, 2003, 28(6): 645

    8. [8]

      8. Chen,W. X.; Zhao, J.; Yang, L. J.; Liu Z. L. Mater. Chem. Phys., 2005, 91: 124

    9. [9]

      9. Zhao, J.; Chen,W. X.; Zheng, Y. F.; Li, X.; Xu, Z. D. J. Mater. Sci., 2006, 41: 5514

    10. [10]

      10. Yoshida, S.; Sano, M. Chem. Phys. Lett., 2006, 433: 97

    11. [11]

      11. Liu, Z. L.; Yang, L. J.; Chen,W. X.; Han, M.; Gan, L. Langmuir, 2004, 20(1): 181

    12. [12]

      12. Chu, Y. Y.;Wang, Z. B.; Gu, D. M.; Yin, G. P. J. Power Sources, 2010, 195: 1799

    13. [13]

      13. Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources, 2007, 170: 46

    14. [14]

      14. Wang, H.W.; Dong, R. X.; Chang, H. Y.; Liu, C. L.; Chen, Y.W. Mater. Lett., 2007, 61: 830

    15. [15]

      15. Liang, Y.; Liao, D.W. Acta Phys. -Chim. Sin., 2008, 24: 317

    16. [16]

      [梁营, 廖代伟. 物理化学学报, 2008, 24: 317]

    17. [17]

      16. Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc., 2005, 152: 2406

    18. [18]

      17. Liu, Z. L.; Gan, L. M.; Liang, H.; Chen,W. X.; Lee, J. Y. J. Power Sources, 2005, 139: 73

    19. [19]

      18. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc., 2004, 126: 8028

    20. [20]

      19. Xiao, C. J.; Hu, S.; Fu, Z. H.; Luo, Y. M.;Wang, H. Y. Appl. Chem. Indus., 2007, 36: 855

    21. [21]

      20. Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem., 2003, 107: 6292.

    22. [22]

      21. Raadmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal., 1995,154: 98

    23. [23]

      22. Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem., 2002, 12: 2453


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(1377)
  • Abstract views(2682)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return