Citation: DONG Ze-Hua, SHI Wei, GUO Xing-Peng. Localized Corrosion Inhibition of Carbon Steel in Carbonated Concrete Pore Solutions Using Wire Beam Electrodes[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB20110110 shu

Localized Corrosion Inhibition of Carbon Steel in Carbonated Concrete Pore Solutions Using Wire Beam Electrodes

  • Received Date: 1 July 2010
    Available Online: 24 November 2010

    Fund Project: 国家自然科学基金(50971064)资助项目 (50971064)

  • The initiation, growth, and temporal and spatial distribution of localized corrosion of Q345B carbon steel in carbonated concrete pore solutions (pH 9.6) containing 0.1 mol·L-1 Cl- ions were investigated using a potential and galvanic mapping technique based on a wire beam electrode (WBE). Different mechanisms for repair and suppression on the stable localized corrosion by tetraethylenepentamine (TEPA) and nitrite were compared. The results indicate that nitrite can inhibit the active dissolution of steel beneath the rust layer because of the fast penetration of nitrite into the rust layer. However, TEPA can promote active dissolution under the rust layer initially because of its slow penetration rate through the rust layer. The localized active dissolution was only refrained after a long time because of TEPA molecules permeating into the interface between the rust layer and the steel matrix. Electrochemical impedance spectroscopy (EIS) was useful in allowing us to determine how the localized corrosion was initiated but failed to indicate the heterogeneous adsorption of the inhibitors on steel. A new localized corrosion factor (LF) based on galvanic mapping is proposed and is shown to be effective for the characterization of the localization of corrosion and the inhibition effect of inhibitors on localized corrosion.

  • 加载中
    1. [1]

      1. Tan, Y. J.; Aung, N. N.; Liu, T. Corrosion Science, 2006, 48: 23

    2. [2]

      2. Tan, Y. J.; Liu, T.; Aung, N. N. Corrosion Science, 2006, 48: 53

    3. [3]

      3. Weng, Y. J.; Zhao, H. Y. Journal of Chinese Society for Corrosion and Protection, 2003, 23:326.

    4. [4]

      [翁永基, 赵海燕. 中国腐蚀与防护学报, 2003, 23: 326]

    5. [5]

      4. Aung, N. N.; Tan, Y. J.; Liu, T. Corrosion Science, 2006, 48: 39

    6. [6]

      5. Liu, T.; Tan, Y. J.; Lin, B. Z. M.; Aung, N. N. Corrosion Science, 2006, 48: 67

    7. [7]

      6. Wang,W.; Lu, Y. H.; Zou, Y.; Zhang, X.;Wang, J. Corrosion Science, 2010, 52: 810

    8. [8]

      7. Zhang, X.;Wang,W.;Wang, J. Corrosion Science, 2009, 51: 1475

    9. [9]

      8. Dong, Z. H.; Guo, X. P.; Liu, H. F.; Xu, L. M.; Zheng, J. X. Journal of Chinese Society for Corrosion and Protection, 2002, 22: 48.

    10. [10]

      [董泽华, 郭兴蓬, 刘宏芳, 许立铭, 郑家燊. 中国腐蚀与 防护学报, 2002, 22: 48]

    11. [11]

      9. Loulizi, A.; Al-Qadi, I. L.; Diefenderfer, B. K. Aci Materials Journal, 2000, 97: 465

    12. [12]

      10. Jamil, H. E.; Shriri, A.; Boulif, R.; Bastos, C.; Montemor, M. F.; Ferreira, M. G. S. Electrochimica Acta, 2004, 49: 2753

    13. [13]

      11. Ngala, V. T.; Page, C. L.; Page, M. M. Materials and Corrosion, 2004, 55: 511

    14. [14]

      12. Zhao, B.; Du, R. G.; Lin, C. J. Electrochemistry, 2005, 11: 382

    15. [15]

      [赵冰, 杜荣归, 林昌健. 电化学, 2005, 11: 382]

    16. [16]

      13. Wu, Q.; Liu, Y.; Du, R. G.; Lin, C. J. Acta Metallurgica Sinica, 2008, 44: 346.

    17. [17]

      [吴群, 刘玉, 杜荣归, 林昌健. 金属学报, 2008, 44: 346]

    18. [18]

      14. Hu, R. G.; Huang, R. S.; Du, R. G.; Lin, C. J. Acta Phys. -Chim. Sin., 2003, 19: 46.

    19. [19]

      [胡融刚, 黄若双, 杜荣归, 林昌健. 物理化学学报, 2003, 19: 46]

    20. [20]

      15. Jamil, H. E.; Montemor, M. F.; Boulif, R.; Shriri, A.; Ferreira, M. G. S. Electrochimica Acta, 2003, 48: 3509

    21. [21]

      16. Aung, N. N.; Tan, Y. J. Corrosion Science, 2004, 46: 3057

    22. [22]

      17. Zhong, Q. D. Corrosion Science, 2002, 44: 909

    23. [23]

      18. Tan, Y. J. Corrosion Science, 2005, 47: 1653

    24. [24]

      19. Aung, N. N.; Tan, Y. J. Materials and Corrosion, 2006, 57: 555

    25. [25]

      20. Mansfeld, F.; Sun, Z.; Hsu, C. H.; Nagiub, A. Corrosion Science, 2001, 43: 341

    26. [26]

      21. Valcarce, M. B.; Vazquez, M. Materials Chemistry and Physics, 2009, 115: 313

    27. [27]

      22. Cheng, Y. F.; Luo, J. L. Electrochimica Acta, 1999, 44: 2947

    28. [28]

      23. Zhang, J.; Zhao,W. M.; Guo,W. Y.;Wang, Y.; Li, Z. P. Acta Phys. -Chim. Sin., 2008, 24: 1239.

    29. [29]

      [张军, 赵卫民, 郭文跃, 王勇, 李中谱. 物理化学学报, 2008, 24: 1239]

    30. [30]

      24. Ahn, S. J.; Kwon, H. S. Electrochimica Acta, 2004, 49: 3347


  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240063

    3. [3]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, doi: 10.3866/PKU.DXHX202304078

    4. [4]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309002

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306039

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, doi: 10.12461/PKU.DXHX202407112

    9. [9]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, doi: 10.12461/PKU.DXHX202412047

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100089

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240001

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240326

    17. [17]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240444

    20. [20]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20250124

Metrics
  • PDF Downloads(1146)
  • Abstract views(2677)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return