Citation:
YANG Xin-Li, YIN An-Yuan, DAI Wei-Lin, FAN Kang-Nian. Synthesis of Highly Efficient WO3-Doped MCF Catalyst and Its Application in the Selective Oxidation of Cyclopentene to Glutaraldehyde[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 177-185.
doi:
10.3866/PKU.WHXB20110105
-
We synthesized WO3 doped mesocellular silica foam (WO3-doped MCF) catalysts with a high tungsten oxide content of 20% (w, mass fraction) directly using sodium tungstate and tetraethylorthosilicate as precursors. The catalysts showed high thermal stability after calcination at 773 K. Small-angle X-ray scattering, N2 adsorption, and transmission electron microscopy results indicated that the characteristic three dimensional mesocellular structural features of the MCFs were retained after the incorporation of tungsten oxide species. Ultraviolet-Raman and ultraviolet-visible diffuse reflectance spectroscopy data showed that isolated or lowly condensed oli meric tungsten oxide species were obtained for the WO3- doped MCF catalysts. These oxide species were stable and highly dispersed in the silica-based MCF matrix with a tungsten oxide content lower than 20% (w). We found that the nature of the tungsten species largely depended on its content and the direct synthesis method was beneficial in obtaining highly dispersed tungsten oxide species. In the selective oxidation of cyclopentene (CPE) to glutaraldehyde (GA), the 20% (w) WO3-doped MCF catalyst had a CPE conversion of 100% and a GA yield of 83.5% after reacting for 16 h. Furthermore, very stable catalytic activity after many recycling tests was apparent for the WO3-doped MCF catalyst indicating that almost no tungsten species was leached into the reaction solution. A proper amount of tungsten oxide and its high dispersion accounted for the high activity.
-
-
-
[1]
1. Kresge, C. T.; Leonowicz, M. E; Roth,W. J; Vartuli, J. C; Beck, J. C. Nature, 1992, 359: 710
-
[2]
2. Davis, M. E. Nature, 2002, 417: 813
-
[3]
3. Stein, A. Adv. Mater., 2003, 15: 763
-
[4]
4. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh. N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science, 1998, 279: 548
-
[5]
5. Schmidt-Winkel, P.; Lukens,W.W.; Zhao, D. Y.; Yang, P. D.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc., 1999, 121: 254
-
[6]
6. Schmidt-Winkel, P.; Lukens,W.W.; Yang, P. D.; Mar lese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12: 686
-
[7]
7. Ungureanu, A.; On, D. T.; Dumitriu, E.; Kaliaguine, S. Appl. Catal. A: Gen., 2003, 254: 203
-
[8]
8. On, D. T.; Ungureanu, A.; Kaliaguine, S. Phys. Chem. Chem. Phys., 2003, 5: 3534
-
[9]
9. Herrera, J. E.; Kwak, J. H.; Hu, J. Z.;Wang, Y.; Peden, C. H. F.; Macht, J.; Iglesia, E. J. Catal. 2006, 239: 200
-
[10]
10. Somma, F.; Strukul, G. Catal. Lett. 2006, 107: 73
-
[11]
11. Zhang, Z.; Suo, J.; Zhang, X.; Li, S. Appl. Catal. A: Gen. 1999, 179: 11
-
[12]
12. Gao, R. H.; Dai,W. L.; Yang, X. L.; Li, H. X.; Fan, K. N. Appl. Catal. A: Gen. 2007, 332: 138
-
[13]
13. Su, Y.; Liu, Y. M.;Wang, L. C.; Chen, M.; Cao, Y.; Dai,W. L.; He, H. Y.; Fan, K. N. Appl. Catal. A: Gen., 2006, 315: 91
-
[14]
14. Deng, J. F.; Xu, X. H.; Chen, H. Y.; Jiang, A. R. Tetrahedron, 1992, 48: 3503
-
[15]
15. Yang, X. L.; Dai,W. L.; Chen, H.; Xu, J. H.; Cao ,Y.; Li, H. X.; Fan, K. N. Appl. Catal. A: Gen., 2005, 283: 1
-
[16]
16. Chen, H.; Dai,W. L.; Deng, J. F.; Fan, K. N. Catal. Lett., 2002, 81: 131
-
[17]
17. Yang, X. L.; Dai,W. L.; Gao, R. H.; Chen, H.; Li, H. X.; Cao, Y.; Fan, K. N. J. Mol. Catal. A, 2005, 241: 205.
-
[18]
18. Yang, X. L.; Dai,W. L.; Gao, R. H.; Fan, K. N. J. Catal., 2007, 249: 278
-
[19]
19. Weng,W. Z.; Chen, M. S.; Yan, Q. G.;Wu, T. H.; Chao, Z. S.; Liao, Y. Y.;Wan, H. L. Catal. Today, 2000, 63: 317
-
[20]
20. Dai,W. L.; Chen, H.; Cao, Y.; Li, H. X.; Xie, S. H.; Fan, K. N. Chem. Commun., 2003: 892
-
[21]
21. Lu, G.; Li, X. Y.; Qu, Z. P.;Wang, Y. X.; Chen, G. H. Appl. Surf. Sci., 2008, 225: 3117
-
[22]
22. Hüsing, N.; Schubert, U. Angew. Chem. Int. Edit., 1998, 37: 22
-
[23]
23. Pérez-Cadenas, A. F.; Moreno-Castilla, C.; Maldonado-Hódar, F. J.; Fierro, J. L. G. J. Catal., 2003, 217: 30
-
[24]
24. Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E. Chem. Mater., 1995, 7: 304
-
[25]
25. Wang, Y.; Zhang, Q.; Ohishi, Y.; Shishido, T.; Takehira, K. Catal. Lett., 2001, 72: 215
-
[26]
26. Briot, E.; Piquemal, J. Y.; Vennat, M.; Brégeault, J. M.; Chottard, G.; Manoli, J. M. J. Mater. Chem., 2000, 10: 953
-
[27]
27. Pistorius, C.W. F. T. J. Chem. Phys., 1966, 44: 4532
-
[28]
28. Klepel, O.; Böhlmann,W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mat., 2004, 76: 105
-
[29]
29. Weber, R. S. J. Catal., 1995, 151: 470
-
[30]
30. Iglesia, E.; Barton, D. G.; Soled, S. L.; Miseo, S.; Baumgartner, J. E.; Gates,W. E.; Fuentes, G. A.; Meitzner, G. D. Stud. Surf. Sci. Catal., 1996, 101: 533
-
[31]
31. Xiong, G.; Li, C.; Li, H.; Xin, Q.; Feng, Z. Chem. Commun., 2000: 677
-
[32]
32. Salvatl, L., Jr.; Makovsky, L. E.; Stencel, J. M.; Brown, F. R.; Hercules, D. M. J. Phys. Chem., 1981, 85: 3700
-
[33]
33. de Lucas, A.; Valverde, J. L.; Cañizares, P.; Rodriguez, L. Appl. Catal. A, 1999, 184: 143
-
[34]
34. Gao, X. T.; Bare, S. R.;Weckhuysen, B. M.;Wachs, I. E. J. Phys. Chem. B, 1998, 102: 10842
-
[35]
35. Piquemal, J. Y.; Briot, E.; Vennat, M.; Brégeault, J. M.; Chottardb, G.; Manolic, J. M. Chem. Commun., 1999: 1195
-
[36]
36. Lok, B. M.; Marcus, B. K.; Angnell, C. L. Zeolites, 1986, 6: 185
-
[37]
37. Martin, C.; Malet, P.; Solana, G.; Rives, V. J. Phys. Chem. B, 1998, 102: 2759
-
[38]
38. Martin, C.; Martin, I.; Rives,V.; Solana, G.; Loddo,V.; Palmisano, L.; Sclafani, A. J. Mater. Sci., 1997, 32: 6039
-
[39]
39. Wachs, I. E. Catal. Today, 1996, 27: 437
-
[40]
40. Lu. Y.; Yin, H. B.;Wu, H. X.; Liu, H.; Jiang, T. S.;Wada, Y. J. Catal. Commun., 2006, 7: 832
-
[1]
-
-
-
[1]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[2]
Yueyue WEI , Xuehua SUN , Hongmei CHAI , Wanqiao BAI , Yixia REN , Loujun GAO , Gangqiang ZHANG , Jun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
-
[3]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[4]
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
-
[5]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[6]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[12]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[13]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[14]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[15]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[16]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[17]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[18]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[19]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[20]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[1]
Metrics
- PDF Downloads(1087)
- Abstract views(2312)
- HTML views(37)