Citation:
ZHAN Chang-Guo. Development and Application of First-Principles Electronic Structure Approach for Molecules in Solution Based on Fully Polarizable Continuum Model[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 1-10.
doi:
10.3866/PKU.WHXB20110101
-
This is a brief review of some recent progress in the development and application of firstprinciples electronic structure approaches for molecules in solution. In particular, it accounts for the background, theoretical features, and representative applications of a recently developed, truly accurate continuum solvation model which is known as Surface and Volume Polarization for Electrostatics (SVPE) or Fully Polarizable Continuum Model (FPCM) in literature. The FPCM-based first-principles electronic structure approaches have been widely employed to study a variety of chemical and biochemical problems and serve as an integrated part of various computational protocols for rational drug design. Some perspective of the future of the FPCM-based first-principles electronic structure approaches is also given.
-
-
-
[1]
1. Rivail, J. L.; Rinaldi, D. Computational chemistry: reviews of current trends. Leszczynski, J. Ed. Singapore:World Scientific, 1996:Vol.1, p139
-
[2]
2. Orozco, M.; Luque, F. J. Chem. Rev., 2000, 100: 4187
-
[3]
3. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105: 2999
-
[4]
4. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2009, 42: 493
-
[5]
5. Bandyopadhyay, P.; rdon, M. S. J. Chem. Phys., 2000, 113, 1104
-
[6]
6. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 1522
-
[7]
7. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 2621
-
[8]
8. Gronert, S.; Pratt, L. M.; Mogali, S. J. Am. Chem. Soc., 2001, 123: 3081
-
[9]
9. Clementi, E. Computational aspects of large chemical systems. Berlin: Springer, 1980
-
[10]
10. Gao, J.; Xia, X. F. Science, 1992, 258: 631
-
[11]
11. Vreven,T.; Morokuma, K. J. Chem. Phys., 2000, 113: 2969
-
[12]
12. Cui, Q.; Karplus, M. J. Chem. Phys., 2000, 112: 1133
-
[13]
13. Florian, J.;Warshel,A. J. Phys. Chem. B, 1997, 101: 5583
-
[14]
14. Broo,A.; Pearl, G.; Zerner, M. C. J. Phys. Chem.A, 1997, 101: 2478
-
[15]
15. Jung,Y.; Ho Choi, C. H.; rdon, M. S. J. Phys. Chem. B, 2001, 105: 4039
-
[16]
16. Hori,T.;Takahashi, H.; Nakano, M.; Nitta,T.;Yang,W. Chem. Phys. Lett., 2006, 419: 240
-
[17]
17. Acevedo, O.; Jorgensen,W. L. Acc. Chem. Res., 2010, 43: 142
-
[18]
18. Tomasi, J.; Persico, M. Chem. Rev., 1994, 94: 2027
-
[19]
19. Cramer, C. J.;Truhlar, D. G. Chem. Rev., 1999, 99: 2161
-
[20]
20. Kinoshita, M.; Hirata, F. J. Chem. Phys., 1996, 104: 8807
-
[21]
21. Palmer, D. S.; Sergiievskyi,V. P.; Jensen, F.; Fedorov, M.V. J. Chem. Phys., 2010, 133: 044104
-
[22]
22. Miyata,T.; Ikuta,Y.; Hirata, F. J. Chem. Phys., 2010, 133: 044114
-
[23]
23. Chen,W.; rdon, M. S. J. Chem. Phys., 1996, 105: 11081
-
[24]
24. Kerdcharoen,T.; Morokuma, K. Chem. Phys. Lett., 2002, 355: 257
-
[25]
25. Kerdcharoen,T.; Morokuma, K. J. Chem. Phys., 2003, 118: 8856
-
[26]
26. Hou, G.; Zhu, X.; Cui, Q. J. Chem. Theory Comput., 2010, 6: 2303
-
[27]
27. Heard, G. L.;Yates, B. F. J. Comput. Chem., 1996, 17: 1444
-
[28]
28. Cossi, M.; Barone,V.; Cammi, R.;Tomasi, J. Chem. Phys. Lett., 1996, 255: 327
-
[29]
29. Foresman, J. B.; Keith,T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem., 1996, 100: 16098
-
[30]
30. Cancès, E.; Mennucci, B.;Tomasi, J. J. Chem. Phys., 1997, 107: 3032
-
[31]
31. Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. -Theochem, 1999, 464: 211
-
[32]
32. Klamt,A.; Jonas,V. J. Chem. Phys., 1996, 105: 9972
-
[33]
33. Barone,V.; Cossi, M., J. Phys. Chem.A, 1998, 102: 1995
-
[34]
34. Zhan, C. G.; Bentley, J.; Chipman, D. M. J. Chem. Phys., 1998, 108: 177
-
[35]
35. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1998, 109: 10543
-
[36]
36. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1999, 110: 1611
-
[37]
37. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Phys. Chem.A, 2000, 104: 7672
-
[38]
38. Zhan, C. G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 1999, 121: 7279
-
[39]
39. Zhan, C. G.; Zheng, F. J. Am. Chem. Soc., 2001, 123: 2835
-
[40]
40. Zhan, C. G.; Landry, D.W. J. Phys. Chem.A, 2001, 105: 1296
-
[41]
41. Zhan, C. G.; Niu, S.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 23
-
[42]
42. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 2355
-
[43]
43. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2001, 105: 11534
-
[44]
44. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, J. S. J. Phys. Chem. A, 2002, 106: 3191
-
[45]
45. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Phys. Chem. B, 2002, 106: 717
-
[46]
46. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2002, 106: 9737
-
[47]
47. Zhan, C. G.; Dixon, D.A.; Sabri, M. I.; Kim, M. S.; Spencer, P. S. J. Am. Chem. Soc., 2002, 124: 2744
-
[48]
48. Zhan, C. G.; Dixon, D.A. J. Phys. Chem. B, 2003, 107: 4403
-
[49]
49. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, S. F. Int. J. Mass Spectrom., 2003, 227: 421
-
[50]
50. Zhan, C. G.; Dixon, D.A.; Spencer, P. S. J. Phys. Chem. B, 2003, 107: 2853
-
[51]
51. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 3789
-
[52]
52. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 6407
-
[53]
53. Zhan, C. G.; Spencer, P. S.; Dixon, D.A. J. Phys. Chem. B, 2004, 108: 6098
-
[54]
54. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2004, 108: 2020
-
[55]
55. Zhan, C. G.; Deng, S. X.; Skiba, J. G.; Hayes, B.A.;Tschampel, S. M.; Shields, G. C.; Landry, D.W. J. Comput. Chem., 2005, 26: 980
-
[56]
56. Xiong,Y.; Zhan, C. G. J. Phys. Chem.A, 2006, 110: 12644
-
[57]
57. Lu, H.-T.; Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2007, 111: 10599
-
[58]
58. Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2008, 112: 16851
-
[59]
59. Zheng, F.; Dwoskin, L. P.; Crooks, P. A.; Zhan, C. G. Theo. Chem. Acc., 2009, 124: 269
-
[60]
60. Chipman, D. M. J. Chem. Phys., 1999, 110: 8012
-
[61]
61. Chipman, D. M. J. Chem. Phys., 2000, 112: 5558
-
[62]
62. Chipman, D. M. Theo. Chem. Acta, 2002, 107: 80
-
[63]
63. Chipman, D. M. Theo. Chem. Acta, 2004, 111: 61
-
[64]
64. Xiong,Y.; Zhan, C. G. J. Org. Chem., 2004, 69: 8451
-
[65]
65. Dejaegere, A.; Karplus, M. J. Am. Chem. Soc., 1993, 115: 5316
-
[66]
66. Schmidt, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S.T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.; Mont mery, J. A. J. Comput. Chem., 1993, 14: 1347
-
[67]
67. Vilkas, M. J.; Zhan, C. G. J. Chem. Phys., 2008, 129: 194109
-
[68]
68. Frisch, M. J.;Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004
-
[69]
69. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2008, 41: 760
-
[70]
70. Liu, J.; Kelly, C. P.; ren,A. C.; Marenich,A.V.; Cramer, C. J.; Truhlar, D. G.; Zhan, C. G. J. Chem. Theory Comput., 2010, 6: 1109
-
[71]
71. Kelly, C. P.; Cramer, C. J.;Truhlar, D. G. J. Chem. Theory Comput., 2005, 1: 1133
-
[72]
72. ?lebocka-Tilk,H.; Sauriol, F.;Monette,M.;Brown,R. S. Can. J. Chem., 2002, 80: 1343
-
[73]
73. Bolton, P. D.Aust. J. Chem., 1966, 19: 1013
-
[74]
74. Bolton, P. D.; Jackson, G. L. Aust. J. Chem., 1971, 24: 969
-
[75]
75. Guthrie, J. P. J. Am. Chem. Soc., 1974, 96: 3608
-
[76]
76. Conway, B. E. Ionic hydration in chemistry and biophysics. New York: Elsevier, 1981
-
[77]
77. Marcus,Y. Ion salvation. NewYork:Wiley, 1985
-
[78]
78. Hille, B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer, 1992
-
[79]
79. Franks, N. P.; Lieb,W. R. Nature, 1997, 389: 334
-
[80]
80. Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin,Y.; Romero, M. F.; Boron,W. F.; Nussberger, S.; llan, J. L.; Hediger, M.A. Nature, 1997, 388: 482
-
[81]
81. Doyle, D.A.; Cabral, J. M.; Pfuetzner, R.A.; Kuo,A.; Gulbis, J. M.; Cohen, S. L.; Chait, B.T.; MacKinnon, R. Science, 1998, 280: 69
-
[82]
82. MacKinnon, R.; Cohen, S. L.; Kuo,A.; Lee, A.; Chait, B.T. Science, 1998, 280: 106
-
[83]
83. Nakamura,T.;Akutagawa,T.; Honda, K.; Underhill,A. E.; Coomber,A.T.; Friend, R. H. Nature, 1998, 394: 159
-
[84]
84. Roux, B.; MacKinnon, R. Science, 1999, 285: 100
-
[85]
85. Wu, K.; Iedema, M. J.; Cowin, J. P. Science, 1999, 286: 2482
-
[86]
86. Anson, L. Nature, 1999, 402: 739
-
[87]
87. MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature, 1999, 402: 792
-
[88]
88. Kolbe, M.; Besir, H.; Essen, L. O.; Oesterhelt, D. Science, 2000, 288: 1390
-
[89]
89. Weber, J. M.; Kelley, J. A.; Nielsen, S. B.;Ayotte, P.; Johnson, M.A. Science, 2000, 287: 2461
-
[90]
90. Aqvist, J.; Luzhkov,V. Nature, 2000, 404: 881
-
[91]
91. Williams, K.A. Nature, 2000, 403: 112
-
[92]
92. Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tóth, é.; Powell, D. H.; Fischer, H. E.; Helm, L.; Merbach,A. Science, 2001, 291: 856
-
[93]
93. Kielpinski, D.; Meyer,V.; Rowe, M.A.; Sackett, C.A.; Itano,W. M.; Monroe, C.;Wineland, D. J. Science, 2001, 291: 1013
-
[94]
94. Kropman, M. F.; Bakker, H. J. Science, 2001, 291: 2118
-
[95]
95. Mejias, J. A.; La , S. J. Chem. Phys., 2000, 113: 7306
-
[96]
96. Friedman, H. L.; Krishnan,V.V.Water:Acomprehensive treatise. NewYork: Plenum, 1973
-
[97]
97. Zhu,T.; Li, J.; Hawkins, G. D.; Cramer, C. J.;Truhlar, D. G. J. Chem. Phys. 1998, 109: 9117
-
[98]
98. Tissandier, M. D.; Cowen, K.A.; Feng,W.Y.; Gundlach, E.; Cohen, M. H.; Earhart,A. D.; Coe, J.V. J. Phys. Chem.A, 1998, 102: 7787; 1998, 102: 9308 (correction)
-
[99]
99. Mallard,W. G.; Linstrom, P. J. Eds. NIST chemistry webbook, NIST standard reference database number 69, February 2000. Gaithersburg, MD: National Institute of Standards andTechnology, 2000 (http://webbook.nist. v)
-
[100]
100. Ruscic, B.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Harding, L. B.;Asher, R. L.;Wagner,A. F. J. Phys. Chem.A, 2001, 105: 1
-
[101]
101. Ruscic, B.;Wagner,A. F.; Harding, L. B.;Asher, R. L.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Song,Y.; Qian, X.; Ng, C.Y.; Liu, J.; Chen,W.; Schwenke, D.W. J. Phys. Chem.A, 2002, 106: 2727
-
[102]
102. Huang, X.; Zheng, F.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Am. Chem. Soc., 2005, 127: 14401
-
[103]
103. Huang, X.; Zheng, F.; Chen, X.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Med. Chem., 2006, 49: 7661
-
[104]
104. Huang, X.; Zheng, F.; Stokes, C.; Papke, R. L.; Zhan, C. G. J. Med. Chem., 2008, 51: 6293
-
[105]
105. Huang, X.; Zheng, F.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 16691
-
[106]
106. Pan,Y.; Gao, D.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 5140
-
[107]
107. Zhan, C. G.; Zheng, F.; Landry, D.W. J. Am. Chem. Soc., 2003, 125: 2462
-
[108]
108. Hamza,A.; Cho, H.;Tai, H. H.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 4776
-
[109]
109. Gao, D.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 23070
-
[110]
110. Zhan, C. G.; Gao, D. Biophysical Journal, 2005, 89: 3863
-
[111]
111. Liu, J.; Hamza,A.; Zhan, C. G. J. Am. Chem. Soc., 2009, 131: 11964
-
[112]
112. Gao, D.; Zhan, C. G. Proteins, 2006, 62: 99
-
[113]
113. Pan,Y.; Gao, D.;Yang,W.; Cho, H.;Yang, G. F.;Tai, H. H.; Zhan, C. G. Proc. Natl. Acad. Sci. U. S.A., 2005, 102: 16656
-
[114]
114. Gao, D.; Cho, H.;Yang,W.; Pan,Y.;Yang, G. F.;Tai, H. H.; Zhan, C. G.Angew. Chem. Int. Edit., 2006, 45: 653
-
[115]
115. Pan,Y.; Gao, D.;Yang,W.; Cho, H.; Zhan, C. G. J. Am. Chem. Soc., 2007, 129: 13537
-
[116]
116. Zheng, F.;Yang,W.; Ko, M. C.; Liu, J.; Cho, H.; Gao, D.;Tong, M.;Tai, H.-H.;Woods, J. H.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 12148
-
[117]
117. Yang,W.; Pan,Y.; Fang, L.; Gao, D.; Zheng, F.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 10889
-
[118]
118. Yang,W.; Pan,Y.; Zheng, F.; Cho, H.;Tai, H. H.; Zhan, C. G. Biophysical Journal, 2009, 96: 1931
-
[119]
119. Zheng, F.; Zhan, C. G. Org. Biomol. Chem., 2008, 6: 836
-
[120]
120. Zheng, F.; Zhan, C. G. J. Computer-Aided Mol. Design, 2008, 22: 661
-
[121]
121. Brim, R. L.; Nance, M. R.;Youngstrom, D.W.; Narasimhan, D.; Zhan, C. G.;Tesmer, J. J. G.; Sunahara, R. K.;Woods, J. H. Mol. Pharmacol., 2010, 77: 593
-
[122]
122. Yang,W.; Xue, L.; Fang, L.; Zhan, C. G. Chemico-Biological Interactions, 2010, 187: 148
-
[123]
123. Gao, D.; Narasimhan, D. L.; Macdonald, J.; Ko, M. C.; Landry, D. W.;Woods, J. H.; Sunahara, R. K.; Zhan, C. G. Mol. Pharmacol., 2009, 75: 318
-
[124]
124. Zheng, F.; Zhan, C. G. Future Med. Chem., 2009, 1: 515
-
[125]
125. Collins, G.T.; Brim, R. L.; Narasimhan, D.; Ko, M. C.; Sunahara, R. K.; Zhan, C. G.;Woods, J. H. J. Pharm. Exp. Ther., 2009, 331: 445
-
[126]
126. Koca, J.; Zhan, C. G.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 2001, 123: 817
-
[127]
127. Xiong,Y.; Lu, H.; Li,Y.;Yang, G.; Zhan, C. G. Biophysical Journal, 2006, 91: 1858
-
[128]
128. Xiong,Y.; Lu, H.T.; Zhan, C. G. J. Comput. Chem., 2008, 29: 1259
-
[129]
129. Lu, H.; ren,A. C.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 7022
-
[1]
-
-
-
[1]
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
-
[2]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[3]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[4]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[5]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[6]
Haiyan Wang , Hucheng Zhang , Lijing Wang , Yonghui Li , Tianhao Zhang , Zhansheng Lu , Hao Jiang , Chunzhong Li , Jianji Wang . Ti3C2Tx MXene-mediating near- and long-range electronic effect on atomically dispersed Co for efficient lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110373-. doi: 10.1016/j.cclet.2024.110373
-
[7]
Hongyang Li , Yue Liu , Xiuwen Wang , Haijing Yan , Guimin Wang , Dongxu Wang , Yilong Wang , Shuo Yang , Yanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042
-
[8]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[9]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[10]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[11]
Xiaoli Zhong , Liangsheng Chen , Hao Xu , Tianhang Jiang , Zhengyi Hua , Fancheng Tan , Xiaoya Mao , Ziquan Fan , Zhiwei Li , Jun Zeng , Shu-Hai Lin . Development of a comprehensive computational pipeline for cardiolipin atlas in an intermittent fasting model. Chinese Chemical Letters, 2025, 36(12): 111027-. doi: 10.1016/j.cclet.2025.111027
-
[12]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[13]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[14]
Xinyuan Li , Zhuozhu Li , Wenzhong Huang , Jiantao Li , Wei Zhang , Shihao Feng , Hao Fan , Zhuo Chen , Sungsik Lee , Congcong Cai , Liang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716
-
[15]
Xiangrong Pan , Xixi Hou , Yuhang Du , Zhixin Pang , Shiyang He , Lan Wang , Jianxue Yang , Longfei Mao , Jianhua Qin , Haixia Wu , Baozhong Liu , Zhan Zhou , Lufang Ma , Chaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536
-
[16]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[17]
Jun-Yang Wang , Yu-Qing Wei , Qing-Ning Wang , Zhi-Guo Wang , Rui Hong , Lisha Yi , Ping Xu , Jia-Zhuang Xu , Zhong-Ming Li , Baisong Zhao . Mucus-inspired lubricative antibacterial coating to reduce airway complications in an intubation cynomolgus monkey model. Chinese Chemical Letters, 2025, 36(8): 110559-. doi: 10.1016/j.cclet.2024.110559
-
[18]
Han-Bin Liu , Xiaoyu Cheng , Zhou Guo , Juan Yang , Fuwen Tan , Donghui Lan , Jian-Ping Tan , Bing Yi , Weixin Zhai , Qing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149
-
[19]
Baolei Li , Da Wang , Miao Yu , Chaozheng He , Xue Li , Jing Zhai , Mdmahadi Hasan , Chenxu Zhao , Min Wang , Dingcai Shen . Accelerating multi-objective catalytic material design: A model-based method. Chinese Chemical Letters, 2025, 36(12): 110454-. doi: 10.1016/j.cclet.2024.110454
-
[20]
Hongen Cao , Xinrui Xiao , Xu Zhang , Yiyang Zhang , Lei Yu . Element Transfer Reaction theory: Scientific connotation and its applications in chemical industry. Chinese Chemical Letters, 2025, 36(9): 110924-. doi: 10.1016/j.cclet.2025.110924
-
[1]
Metrics
- PDF Downloads(1639)
- Abstract views(2447)
- HTML views(16)
Login In
DownLoad: