Citation: TIAN Tao, QIAN Wei-Zhong, TANG Xiao-Ping, YUN Song, WEI Fei. Deactivation of Ag/ZSM-5 Catalyst in the Aromatization of Methanol[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3305-3309. doi: 10.3866/PKU.WHXB20101228 shu

Deactivation of Ag/ZSM-5 Catalyst in the Aromatization of Methanol

  • Received Date: 6 August 2010
    Available Online: 16 November 2010

    Fund Project: 国家自然科学重点基金(20736004, 20736007) (20736004, 20736007)教育部新世纪优秀人才计划(NECT-07-0489)资助项目 (NECT-07-0489)

  • The deactivation and regeneration properties of the methanol aromatization catalyst, Ag/ ZSM-5, were investigated by a continuous reaction-catalyst regeneration experiment over four cycles. The activity of the catalyst decreased gradually over the long reaction and was only partly recovered after coke burning. Characterization of the regenerated catalyst by X-ray diffraction (XRD) and transmission electron microscope (TEM) revealed that the ZSM-5 framework remained unchanged and that the sintering of the Ag nanoparticles was not serious. Analyses by Fourier transform Infrared spectroscopy (FTIR) and ammonia-temperature programmed desorption (NH3-TPD) experiment confirmed that the hydrothermal de-alumination of the catalyst by water in large amounts at 475 °C during aromatization resulted in a significant loss of Brønsted acidity. Consequently, an irreversible decrease in the aromatization ability of the catalyst was apparent.

  • 加载中
    1. [1]

      1. Freeman, D.;Well, R. P. K.; Hutchings, G. J. Catal. Lett., 2002, 82(3-4): 217

    2. [2]

      2. Haag,W. O.; La , R. M.; Rodewald, P. G. J. Mol. Catal., 1982, 17(2-3): 161

    3. [3]

      3. Espinoza, R. L.; Mandersoot,W. G. B. J. Mol. Catal., 1984, 24(1): 127

    4. [4]

      4. Stöcker, M. Microporous Mesoporous Mat. 1999, 29: 3

    5. [5]

      5. Bjorgen, M.; Kolboe, S. Appl. Catal. A, 2002, 225: 285

    6. [6]

      6. Yaragadda, P.; Lund, C. R. F.; Ruckenstein, E. Appl. Catal. A, 1989, 54: 139

    7. [7]

      7. Chang, C. D.; Silvestri, A. J. J. Catal., 1977, 47: 249

    8. [8]

      8. Kecskeméti, A.; Barthos, R.; Solymosi, F. J. Catal., 2008, 258: 111

    9. [9]

      9. Moses, O. A.; Mervyn, A. L. Catal. Commun., 2003, 4: 71

    10. [10]

      10. Jiang, Y. X. Guangxi Chem., 1994, 23(3): 40.

    11. [11]

      [蒋月秀. 广西化工, 1994, 23(3): 40]

    12. [12]

      11. Zaidi, H. A.; Pant, K. K. Catal. Today, 2004, 96: 155

    13. [13]

      12. Choudhary, V. R. Zeolites, 1995, 15: 732

    14. [14]

      13. Yoshilihiro, I.; Katsumi, N.; Yoshio, O. Microporous Mater., 1995, 4: 373

    15. [15]

      14. Tian, T.; Qian,W. Z.; Sun, Y. J.; Cui, Y.; Lu, Y. Y.;Wei, F. Modern Chem. Ind., 2009, 29(1): 55.

    16. [16]

      [田涛, 骞伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. 现代化工, 2009, 29(1): 55]

    17. [17]

      15. Wang, X. X.; Chen, X. R.; Chen, C. L.; Xu, N. P. Petroleum Processing and Petrochemicals, 2006, 37(8): 7.

    18. [18]

      [王星星, 陈晓蓉, 陈长林, 徐南平. 石油炼制与化工, 2006, 37(8): 7]

    19. [19]

      16. Lu, X. D.; Li,W. B.; Yang, C. H.; Dou, X. Y.; Yang, D. Z. Chin. J. Catal., 1992, 13(1): 49.

    20. [20]

      [卢学栋, 李文彬, 杨彩虹, 窦秀云, 杨定珠. 催化学报, 1992, 13(1): 49]

    21. [21]

      17. Fang, L.; Li, Y. D. Catal. Today, 2009, 145(1-2): 101

    22. [22]

      18. Xin, Q. Research methods on solid catalysts. Beijing: Science Press, 2004: 361-366.

    23. [23]

      [辛勤. 固体催化剂研究方法. 北京: 科学出版社, 2004: 361-366]

    24. [24]

      19. Datka, J.; Marschmeyer, S.; Neubarer, T. J. Phys. Chem., 1996, 100(34): 14451

    25. [25]

      20. Sahasrabudhe, A.; Mitra, S.; Tripathi, A. K. Phys. Chem. Chem. Phys., 2003, 5: 3066

    26. [26]

      21. Lu, J. M.;Wang, J. Q.; Li, Y. L.; Yin, D. H. Petrochem. Technol., 2004, 33(8): 717.

    27. [27]

      [鲁金明, 王金渠, 栗艳玲, 殷德宏. 石油化工, 2004, 33(8): 717]

    28. [28]

      22. Hou, H. D.; Huang, C. P.; Chen, B. H.; Li, Y. X.; He, J. J. Beijing Univ. Chem. Techn.(Natural Sci. Ed.), 2005, 32(4): 10.

    29. [29]

      [侯焕娣, 黄崇品, 陈标华, 李英霞, 贺杰. 北京化工大学学报: 自然科学 版, 2005, 32(4): 10]

    30. [30]

      23. Lucas, A.; Canizares, P.; Durhn, A. Appl. Catal. A, 1997, 154: 221


  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    4. [4]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    17. [17]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    18. [18]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

Metrics
  • PDF Downloads(1339)
  • Abstract views(3038)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return