Citation: SUN Li-Li, ZHAO Yue-Hong, HAN Qing-Zhen, WEN Hao. Solvent Effect in the Reaction between Bis[1,2-di(trifluoromethyl) ethylene-1,2-dithiolato] Nickel and Butadiene[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3345-3350. doi: 10.3866/PKU.WHXB20101225 shu

Solvent Effect in the Reaction between Bis[1,2-di(trifluoromethyl) ethylene-1,2-dithiolato] Nickel and Butadiene

  • Received Date: 7 July 2010
    Available Online: 10 November 2010

    Fund Project: 国家自然科学基金(20703047, 20821092)资助项目 (20703047, 20821092)

  • We studied the reaction mechanism for the reaction between bis[1,2-di(trifluoromethyl) ethylene-1,2-dithiolato] nickel (Ni[S2C2(CF3)2]2) and butadiene by density functional theory (DFT) at the B3LYP/6-31G(d) level. The solvent effect on the charge distribution, dipole moment, and solvation free energies of the stationary points were investigated using the polarizable continuum model (PCM). The calculation results showed that this reaction was orbital symmetry allowed and concerted. The reaction stationary points become more stable with an increase of solvent dielectric constant. Additionally, the degree of stabilization for the transition state and the product is larger than that of the reactants in the same solvent, which means that the reaction occurs more easily.

  • 加载中
    1. [1]

      1. Wang, K.; Stiefel, E. I. Science, 2001, 291: 106

    2. [2]

      2. Fan, Y. B.; Hall, M. B. J. Am. Chem. Soc., 2002, 124: 12076

    3. [3]

      3. Harrison, D. J.; Nguyen, N.; Lough, A. J.; Fekl, U. J. Am. Chem. Soc., 2006, 128: 11026

    4. [4]

      4. Szilagyi, R. K.; Lim, B. S.; Glaser, T.; Holm, R. H.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc., 2003, 125: 9158

    5. [5]

      5. Smith, R. S.; Herrera, P. S.; Henderson, J. F.; Spence, R. E. V. H. Selective chemical binding for olefins/paraffins separation. CA, 2415064

    6. [6]

      [P]. 2004-06-23

    7. [7]

      6. Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem., 1990, 11: 700

    8. [8]

      7. Han, Q. Z.; Geng, C. Y.; Zhao, Y. H.; Qi, C. S.;Wen, H. Acta Phys. Sin., 2008, 57: 96

    9. [9]

      [韩清珍; 耿春宇; 赵月红; 戚传松; 温浩. 物理学报, 2008, 57: 96]

    10. [10]

      8. Han, Q. Z.; Zhao, Y. H.;Wen, H. Mol. Simulat., 2008, 34: 631

    11. [11]

      9. Schrauze, G.; Ho, R. K. Y.; Murillo, R. P. J. Am. Chem. Soc., 1970, 92: 3508

    12. [12]

      10. Baker, J. R.; Hermann, A.;Wing, R. M. J. Am. Chem. Soc., 1971, 93: 6486

    13. [13]

      11. Clark, G. R.;Waters, J. M.;Whittle, K. R. J. Chem. Soc. Dalton Trans., 1973: 821

    14. [14]

      12. Herman, A.;Wing, R. M. J. Organomet. Chem., 1973, 63: 441

    15. [15]

      13. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett., 1996, 255: 327

    16. [16]

      14. Barone, V.; Cossi, M. J. Phys. Chem. A, 1998, 102: 1995

    17. [17]

      15. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision A.01. Pittsburgh, PA: Gaussian Inc., 2003

    18. [18]

      16. Hay, P. J.;Wadt,W. R. J. Chem. Phys., 1985, 82: 270

    19. [19]

      17. Hay, P. J.;Wadt,W. R. J. Chem. Phys., 1985, 82: 299

    20. [20]

      18. Couty, M.; Hall, M. B. J. Comput. Chem., 1996, 17: 1359

    21. [21]

      19. Ehlers, A.W.; Bohme, M.; Dapprich, S.; bbi, A.; Hollwarth, A.; Jonas,V.; Kohler, K.F.; Stegmann, R.;Veldkamp,A.; Frenking, G. Chem. Phys. Lett., 1993, 208: 111

    22. [22]

      20. Check, C. E.; Faust, T. O.; Bailey, J. M.;Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A, 2001, 105: 8111

    23. [23]

      21. Petersson, G. A.; Allaham, M. A. J. Chem. Phys., 1991, 94: 6081

    24. [24]

      22. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Allaham, M. A.; Shirley,W. A.; Mantzaris, J. J. Chem. Phys., 1988, 89: 2193


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    5. [5]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    14. [14]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    18. [18]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(1136)
  • Abstract views(3472)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return