Citation: BAI Ming-Ze, CHENG Li, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of the Laser-Induced Melting of an Al Nanofilm[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3143-3149. doi: 10.3866/PKU.WHXB20101224 shu

Molecular Dynamics Simulation of the Laser-Induced Melting of an Al Nanofilm

  • Received Date: 22 July 2010
    Available Online: 10 November 2010

    Fund Project: 国家自然科学基金(20773618, 21073242) (20773618, 21073242)重庆邮电大学自然科学基金(A2008-39)资助项目 (A2008-39)

  • A coupled computational technique, which combines the one dimensional two-temperature model and molecular dynamics, was used to study the melting dynamics of a nanoscale aluminum film irradiated by a femtosecond laser pulse. The model is capable of providing an atomic-level depiction of fast microscale processes in metals and gives an adequate description of laser light absorption, energy transfer, and fast electron heat conduction in metals. The simulation revealed that the electron temperature, lattice temperature, and laser induced pressure of the Al film were significantly different from those of Ni and Au films. The Al film melts globally soon after laser radiation and this is different from the Ni film, which es through a step melting process. In addition, the Al film shows a much faster melting process than the Ni and Au films because of strong electron-phonon coupling. The melting time of the Al film by an ultrafast laser pulse is consistent with recent experimental observations, which supports the assertion that the laser induced melting of an Al film is a thermal process.

  • 加载中
    1. [1]

      1. Tabata, N.; Yagi, S.; Hishii, M. J. Mater. Process. Technol., 1996,62: 309

    2. [2]

      2. Yeo, C. Y.; Tam, S. C.; Jana, S.; Lau, M.W. J. Mater. Process.Technol., 1994, 42: 15

    3. [3]

      3. Sun, Z.; Ion, J. C. J. Mater. Sci., 1995, 30: 4205

    4. [4]

      4. Gu, B. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2006, 61: 10601

    5. [5]

      5. Wang, C.W.; Qu, S. Y.;Wang, X. H.; Sun. J. H. Machinist Metal Forming, 2008, 8: 38. [王承伟, 曲仕尧, 王新洪, 孙俊华. 金属 加工: 热加工, 2008, 8: 38]

    6. [6]

      6. Cao, X.; Jahazi, M.; Immarigeon, J. P.;Wallace,W. J. Mater. Process. Technol., 2006, 171: 188

    7. [7]

      7. Guo, C.; Rodriguez, G.; Lobad, A.; Taylor, A. J. Phys. Rev. Lett., 2000, 84: 4493

    8. [8]

      8. Kandyla, M.; Shih, T.; Mazur. E. Phys. Rev. B, 2007, 75: 214107

    9. [9]

      9. Siwick, B. J.; Dwyer, J. R.; Jordan, R. E.; Miller, R. J. D. Science, 2003, 302: 1382

    10. [10]

      10. Dwyer, J. R.; Jordan, R. E.; Hebeisen, C. T.; Harb, M.; Ernstorfer, R.; Dartigalongue, T.; Miller, R. J. D. J. Mod. Opt., 2007, 54: 905

    11. [11]

      11. Rahman, A. Phys. Rev. A, 1964, 136: 405

    12. [12]

      12. Stillinger, F. H.; Rahman, A. J. Chem. Phys., 1974, 60: 1545

    13. [13]

      13. Hou, H. Y.; Chen, G. L.; Chen, G. Acta Phys. -Chim. Sin., 2006, 22: 771. [侯怀宇, 陈国良, 陈光. 物理化学学报, 2006, 22: 771]

    14. [14]

      14. Zhang, T.; Zhang, X. R.;Wu, A. L.; Guan, L.; Xu, C. Y. Acta Phys. -Chim. Sin., 2003, 19: 709. [张弢, 张晓茹, 吴爱玲, 管立, 徐昌业. 物理化学学报, 2003, 19: 709]

    15. [15]

      15. Zhou, G. R.; Li, B. Q.; Geng, H. R.; Teng, X. Y.; Chen, G. L. Acta Phys. -Chim. Sin., 2007, 23: 1071. [周国荣, 李蓓琪, 耿浩然, 腾新营, 陈广利. 物理化学学报, 2007, 23: 1071]

    16. [16]

      16. Xin, J. T.; Zhu,W. J.; Liu, C. L. Explosion and Shock Waves, 2004, 24: 207. [辛建婷, 祝文军, 刘仓理. 爆炸与冲击, 2004, 24: 207]

    17. [17]

      17. Anisimov, S. I.; Kapeliovich, B. L.; Perel'man, T. L.; Eksp, Z. Soviet Physics-JETP, 1974, 39: 375

    18. [18]

      18. Ivanov, D. S.; Zhigilei, L. V. Phys. Rev. B, 2003, 68: 22

    19. [19]

      19. Schäfer, C.; Urbassek, H. M.; Zhigilei, L. V. Phys. Rev. B, 2002, 66: 4

    20. [20]

      20. Daw, M. S.; Baskes, M. I. Phys. Rev. Lett., 1983, 50: 1285

    21. [21]

      21. Daw, M. S.; Baskes, M. I. Phys. Rev. B, 1984, 29: 6443

    22. [22]

      22. Zhou, X.W.;Wadley, H. N. G.; Johnson, R. A.; Larson, D. J.; Tabat, N.; Cerezo, A.; Petford-Long, A. K.; Smith, G. D.W.; Clifton, P. H.; Martens, R. L.; Kelly, T. F. Acta Mater., 2001, 49: 4005

    23. [23]

      23. Volkov, A. N.; Zhigilei, L. V. Journal of Physics Conference Series, 2007, 59: 640

    24. [24]

      24. Tas, G.; Maris, H. J. Phys. Rev. B, 1994, 49: 15046

    25. [25]

      25. Morris, J. R.; Song, X. J. Chem. Phys., 2002, 116: 9352


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(2553)
  • Abstract views(3196)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return