Citation: YANG Xiao-Long, XIA Chun-Gu, TANG Li-Ping, XIONG Xu-Mao, MU Xin-Yuan, HU Bin. Effect of Alumina Support and Barium Oxide on the Structure and Catalytic Activity of Ruthenium Catalysts for Ammonia Synthesis[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3263-3272. doi: 10.3866/PKU.WHXB20101223 shu

Effect of Alumina Support and Barium Oxide on the Structure and Catalytic Activity of Ruthenium Catalysts for Ammonia Synthesis

  • Received Date: 1 September 2010
    Available Online: 8 November 2010

    Fund Project: 国家杰出青年科学基金(20625308)资助项目 (20625308)

  • A series of Ba-Ru/Al2O3 catalysts were prepared by the impregnation method using industrial alumina (Al2O3-1) and synthesized alumina (Al2O3-2) as supports. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, X-ray fluorescence spectroscopy, transmission electron microscopy, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, and X-ray photoelectron spectroscopy. The effect of Al2O3 and the BaO promoter on the phase structure, texture properties, morphology, surface properties, and catalytic activity in ammonia synthesis were investigated. The results indicate that the physical and chemical properties of Al2O3 have a strong impact on the structure and activity of the ruthenium catalysts. The BaO promoter has a strong impact on the ruthenium catalyst in two ways: first, the amount of BaO added leads to a difference in the interaction between BaO and γ-Al2O3, which further influences the specific area and the porous structure of the catalysts; second, the addition of BaO influences the reduction process and the surface acidity and alkaline properties of the ruthenium catalysts. A proper amount of BaO promotes the activity and the optimal amount of BaO depends on the properties of the supports.

  • 加载中
    1. [1]

      1. Liang, C. H.; Wei, Z. B.; Xin, Q.; Li, C. Appl. Catal. A., 2001, 208: 193

    2. [2]

      2. Yang, X. L.; Hu, B.; Xia, C. G.; Xiong, X. M.; Mu, X. Y. Ind. Catal., 2010, 18: 5

    3. [3]

      [杨晓龙, 胡斌, 夏春谷, 熊绪茂, 慕新元. 工业催化, 2010, 18: 5]

    4. [4]

      3. You, Z. X.; Inazu, K.; Aika, K.; Baba, T. J. Catal., 2007, 251: 321

    5. [5]

      4. Zhang, X. B.; Li, X. N.; Huo, C.; Cen, Y. Q.; Zhu, Y. F.; Liu, H. Z. Chin. J. Catal., 2002, 23: 207

    6. [6]

      [张新波, 李小年, 霍超, 岑 亚青, 祝一峰, 刘化章. 催化学报, 2002, 23: 207]

    7. [7]

      5. Szmigiel, D.; Raróg-Pilecka, W.; MiSkiewicz, E.; Gliński, M.; Kielak, M.; Kaszkur, Z.; Kowalczyk, Z. Appl. Catal. A, 2004, 273: 105

    8. [8]

      6. Xu, Q. C.; Lin, J. D.; Fu, X. Z.; Liao, D. W. Catal. Commun., 2008, 9: 1214

    9. [9]

      7. Ni, J.;Wang, R.; Lin, J. X.;Wei, K. M. Acta Phys. -Chim. Sin., 2009, 25(3): 519

    10. [10]

      [倪军, 王榕, 林建新, 魏可镁. 物理化学 学报, 2009, 25(3): 519]

    11. [11]

      8. Luo, X. J.;Wang, R.; Ni, J.; Lin, J. X.; Lin, B. Y.; Xu, X. M.;Wei, K. M. Catal. Lett., 2009, 133: 382

    12. [12]

      9. Larichev, Y. V.; Moroz, B. L.; Zaikovskii, V. L.; Yunusov, S. M.; Kalyuzhnaya, E. S.; Shur, V. B.; Bukhtiyarov, V. I. J. Phys. Chem. C, 2007, 111: 9427

    13. [13]

      10. Miyazaki, A.; Balint, I.; Aika, K.; Nakano, Y. J. Catal., 2001, 204: 364

    14. [14]

      11. Kadowaki, Y.; Aika, K. J. Catal., 1996, 161: 178

    15. [15]

      12. Siporin, S. E.; Davis, R. J. J. Catal., 2004, 225: 359

    16. [16]

      13. Wang, R.;Wei, K. M.; Lin, J. X.; Yu, X. J.; Mao, S. L. Ind. Catal., 2005, 13: 31

    17. [17]

      [王榕, 魏可镁, 林建新, 俞秀金, 毛树禄. 工业 催化, 2005, 13: 31]

    18. [18]

      14. Mao, S. L.; Wang, R.; Yu, X. J.; Lin, J. X.;Wei, K. M. Chin. Rare Earth, 2004, 25: 18

    19. [19]

      [毛树禄, 王榕, 俞秀金, 林建新, 魏可镁. 稀土, 2004, 25: 18]

    20. [20]

      15. Fu,W. J. The Preparation and Study of the Ruthenium Catalysts for Ammonia Synthesis

    21. [21]

      [D]. Fuzhou: Fuzhou University, 2003

    22. [22]

      [傅武俊. 钌催化剂的制备及氨合成催化性能的研究

    23. [23]

      [D]. 福州: 福州大学, 2003]

    24. [24]

      16. Liu, H. Z. Ammoina synthesis catalysis: practice and theory. Beijing: Chemical Industry Press, 2007: 309, 293

    25. [25]

      [刘化章. 氨合 成催化剂实践与理论. 北京: 化学工业出版社, 2007: 309, 293]

    26. [26]

      17. Okal, J. Catal. Commun. 2010, 11: 508

    27. [27]

      18. Huo, C.; Yan, G.; Zheng, Y. F.; Yu, F.W.; Liu, H. Z. Chin. J. Catal., 2007, 28: 484

    28. [28]

      [霍超, 晏刚, 郑遗凡, 于凤文, 刘化 章. 催化学报, 2007, 28: 484]

    29. [29]

      19. Sharma, L. D.; Kumar, M.; Saxena, A. K.; Chand, M.; Gupta, J. K. J. Mol. Catal. A, 2002, 185: 135

    30. [30]

      20. Li,Y.; Yang, Q. H.; Yang, J.; Li, C. Microporous Mesopor Mat., 2006, 91: 85

    31. [31]

      21. Yuan, Z. Y.;Wang, J. Z.; Zhang, Z. L.; Chen, T. H.; Li, H. X. Microporous Mesoporous Mat., 2001, 43: 227

    32. [32]

      22. Groen, J. C.; Pérez-Ramírez, J. Appl. Catal. A, 2004, 268: 121

    33. [33]

      23. Jacobsen, C. J. H.; Dahl, S.; Hansen, P. L.; Törnqvist, E.; Jensen, L.; Topsφe, H.; Prip, D. V.; Mφenshaug, P. B.; Chorkendorff, I. J. Mol. Catal. A, 2000, 163: 19

    34. [34]

      24. Seetharamulu, P.; Siva Kumar, V.; Padmasri, A. H.; David Raju, B.; Rama Rao, K. S. J. Mol. Catal. A, 2007, 263: 253

    35. [35]

      25. Seetharamulu, P.; Hari Prasad Reddy, K.; Padmasri, A. H.; Rama Rao, K. S.; David Raju, B. Catal. Today, 2009, 141: 94

    36. [36]

      26. Huo, C.; Xia, Q. H.; Luo, Y.; Yang, X. Z.; Liu, H. Z. Chin. J. Catal., 2009, 30: 537

    37. [37]

      [霍超, 夏庆华, 骆燕, 杨霞珍, 刘化 章. 催化学报, 2009, 30: 537-542]

    38. [38]

      27. Hanse, T.W.;Wagner, J. B.; Hansen, P. L.; Dahl, S.; Topsφe, H.; Jacobsen, C. J. H. Science, 2001, 294: 1508

    39. [39]

      28. Dahl, S.; Logadottir, A.; Jacobsen, C. J. H.; Nφrskov, J. K. Appl. Catal. A, 2001, 222: 19

    40. [40]

      29. Zhao, Y. Ind. Catal., 2002, 10: 54

    41. [41]

      [赵琰, 工业催化, 2002, 10: 54]

    42. [42]

      30. Walker, G. S.; Pyke, D. R.;Werrett, C. R.;Williams, E.; Bhattacharya, A. K. Appl. Surf. Sci., 1999, 147: 228

    43. [43]

      31. Somorjai, G. A. Science, 1978, 201: 489

    44. [44]

      32. Nagai, M.; Koizumi, K.; Omi, S. Catal. Today, 1997, 35: 393

    45. [45]

      33. Elmasides, C.; Kondarides, D. I., Grünert,W.; Verykios, X. E. J. Phys. Chem. B, 1999, 103: 5227


  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    11. [11]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(1243)
  • Abstract views(2791)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return