Citation:
LI Mei-Chao, WANG Wu-Yang, ZHU Wan-Xia, MA Chun-An. Electrocatalytic Oxidation of Ascorbic Acid on a PPy-HEImTfa/Pt Electrode and Its Mechanism[J]. Acta Physico-Chimica Sinica,
;2010, 26(12): 3212-3216.
doi:
10.3866/PKU.WHXB20101218
-
A platinum electrode was electrochemically modified with polypyrrole (PPy) in the ionic liquid 1-ethylimidazolium trifluoroacetate (HEImTfa) to produce a modified electrode (PPy-HEImTfa/Pt). Its electrocatalytic performance toward the oxidation of ascorbic acid (0.1 mol·L-1) was investigated by cyclic voltammetry. Compared with a bare Pt electrode and a PPy-H2SO4/Pt electrode, which was prepared in a solution of H2SO4, the peak potentials for ascorbic acid oxidation on the PPy-HEImTfa/Pt electrode decreased by 0.19 and 0.10 V, respectively. Additionally, the peak currents increased by 3.6 and 3.0 mA, respectively. Therefore, the electrocatalytic activity of the PPy-HEImTfa/Pt electrode for the oxidation of ascorbic acid was far better than that of the other systems. In situ Fourier transform infrared (In situ FTIR) spectroscopy results showed that the ascorbic acid was firstly oxidized to dehydroascorbic acid on the PPy-HEImTfa/Pt electrode and then underwent a fast hydration reaction to give hydrated dehydroascorbic acid in the aqueous solution. The hydrated dehydroascorbic acid then underwent further hydrolysis to form 2,3-diketogulonic acid by a ring opening reaction. Finally, a part of ascorbic acid was oxidized to CO2 at high potentials.
-
-
-
[1]
1. Raoof, J. B.; Ojani, R.; Rashid-Nadimi, S. Electrochim. Acta, 2005, 50(24): 4694
-
[2]
2. Xing, X. K.; Bae, I. T.; Shao, M. J.; Liu C. C. J. Electroanal. Chem., 1993, 346(1-2): 309
-
[3]
3. Zhang, L. Electrochim. Acta, 2007, 52(24): 6969
-
[4]
4. Paixao, T. R. L. C.; Bertotti, M. J. Pharm. Biomed. Anal., 2008, 46(3): 528
-
[5]
5. Ambrosi, A.; Morrin, A.; Smyth, M. R.; Killard, A. J. Anal. Chim. Acta, 2008, 609(1): 37
-
[6]
6. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc., Chem. Commun., 1979, (14): 635
-
[7]
7. Li, Y. F. Polymer Bulletin, 2005, (4): 51. [李永舫. 高分子通报, 2005, (4): 51]
-
[8]
8. Ozcan, L.; Sahin, M.; Sahin, Y. Sensors, 2008, 8(9): 5792
-
[9]
9. Gholivand, M. B.; Amiri, M. Electroanalysis, 2009, 21(22): 2461
-
[10]
10. Wang, J. S.;Wang, J. X.;Wang, Z.;Wang, S. C. Synth. Met., 2006, 156(7-8): 610
-
[11]
11. Mohadesi, A.; Taher, M. A. Sens. Actuators B, 2007, 123(2): 733
-
[12]
12. Mascaro, L. H.; ncalves, D.; Bulhoes, L. O. S. Thin Solid Films, 2004, 461(2): 243
-
[13]
13. Mazurkiewicz, J. H.; Innis, P. C.;Wallace, G. G.; MacFarlane, D. R.; Forsyth, M. Synth. Met., 2003, 135(1-3): 31
-
[14]
14. Pringle, J. M.; Efthimiadis, J.; Howler, P. C.; Efthimiadis, J.; MacFarlane, D. R.; Chaplin, A. B.; Hall, S. B.; Officer, D. L.; Wallace, G. G. Polymer, 2004, 45(5): 1447
-
[15]
15. Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrochem. Commun., 2002, 4(11): 881
-
[16]
16. Li, M. C.; Ma, C. A.; Liu, B. Y.; Jin, Z. M. Electrochem. Commun., 2005, 7(2): 209
-
[17]
17. Sun, S. G.; ng, H. Petrochemical Technology, 2001, 30(10): 806. [孙世刚, 贡辉. 石油化工, 2001, 30(10): 806]
-
[18]
18. Nichl, M. E.; Hu, H. Sol. Energy Mater. Sol. Cells, 2000, 63(4): 423
-
[19]
19. Li, M. C.; Shen, Z. L.; Ma, C. A.; Gao, Y. F. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1588
-
[20]
20. Yang, H.; Lu, T. H.; Xue, K. H.; Sun, S. G.; Lu, G. Q.; Chen, S. P. J. Electrochem. Soc., 1997, 144(7): 2302
-
[21]
21. Xue, K. H.; Cai, C. X.; Yang, H.; Zhou, Y. M.; Sun, S. G.; Chen, S. P.; Xu, G. J. Power Sources, 1998, 75(2): 207
-
[22]
22. Gao, Y. F.; Liu,W. H.; Li, Z. G.; Ma, C. A. Chin. J. Spectroscopy Laboratory, 2002, 19(3): 354. [高云芳, 刘文涵, 李祖光, 马淳安. 光谱实验室, 2002, 19(3): 354]
-
[23]
23. Kokoh, K. B.; Hahn, F.; Metayer, A.; Lamy, C. Electrochim. Acta, 2002, 47(24): 3965
-
[24]
24. Wang, X. Y.; Cui, X. P.; Cui, Y. M.; Jin, B. K.; Lin, X. Q. Chem. J. Chin. Univ., 2002, 23(8): 1498. [汪夏燕, 崔兴品, 崔运梅, 金葆康, 林祥钦. 高等学校化学学报, 2002, 23(8): 1498]
-
[1]
-
-
-
[1]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[2]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[3]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[4]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[5]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[6]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[7]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[10]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[11]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[12]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[13]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[14]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[15]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[16]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[17]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[18]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[19]
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
-
[20]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[1]
Metrics
- PDF Downloads(1226)
- Abstract views(2954)
- HTML views(20)