Citation: GAO Hai-Li, LIAO Shi-Jun, ZENG Jian-Huang, LIANG Zhen-Xing, XIE Yi-Chun. Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3193-3198. doi: 10.3866/PKU.WHXB20101214 shu

Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance

  • Received Date: 25 May 2010
    Available Online: 3 November 2010

    Fund Project: 国家自然科学基金(20673040, 20876062) (20673040, 20876062)国家高技术研究发展计划项目(863) (2009AA05Z119)资助 (863) (2009AA05Z119)

  • A platinum-decorated Ru/C catalyst with high platinum utilization efficiency, high performance, and high poisoning tolerance was prepared using a two-stage impregnation reduction method. We found that for anodic methanol oxidation the catalyst activity in terms of the Pt load was 1.9 and 1.5 times as that of Pt/C and PtRu/C alloy catalysts, respectively. These values are also higher than that of the commercial JM PtRu/C catalyst. The electrochemically active surface area of Ru@Pt/C was found to be 1.6 and 1.3 times as those of Pt/C and PtRu/C alloy catalysts, respectively. Furthermore, we found that the ratio of the forward peak current density (If) to the backward peak current density (Ib) reached 2.4, which was 2.7 times as that of the Pt/C catalyst. This implies that the Pt-decorated Ru/C catalyst possesses a high tolerance for the intermediate poisoning species. In addition, the stability of Ru@Pt/C was higher than that of Pt/C, PtRu/ C alloy and JM PtRu/C. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst was determined by XRD and TEM. The high performance and high poisoning tolerance of Ru@Pt/C during the anodic oxidation of methanol make it a promising electrocatalyst for direct methanol fuel cells.

  • 加载中
    1. [1]

      1. Lin, R.; Luo, M. F.; Xin, Q.; Sun, G. Q. Catal. Lett., 2004, 93: 139

    2. [2]

      2. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater., 2003, 15: 4896

    3. [3]

      3. Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev., 2004, 104: 4243

    4. [4]

      4. Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. J. Power Sources, 2010, 195: 1001

    5. [5]

      5. Micoud, F.; Maillard, F.; urgaud, A.; Chatenet, M. Electrochem. Commun., 2009, 11: 651

    6. [6]

      6. Han, D. M.; Guo, Z. P.; Zeng, R.; Kim, C. J.; Meng, Y. Z.; Liu, H. K. Int. J. Hydrog. Energy, 2009, 34: 2426

    7. [7]

      7. Jeon, M. K.; McGinn, P. J. J. Power Sources, 2009, 188: 427

    8. [8]

      8. Haug, A. T.; White, R. E.;Weidner, J.W.; Huang,W. J. Electrochem. Soc., 2008, 149: A862

    9. [9]

      9. Wei, Z. D.; Feng, Y. C.; Li, L.; Liao, M. J.; Fu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. J. Power Sources, 2008, 180: 84

    10. [10]

      10. Jiang, Q. Z.;Wu, X.; Shen, M.; Ma, Z. F.; Zhu, X. Y. Catal. Lett., 2008, 124: 434

    11. [11]

      11. Zeng, J.; Yang, J.; Lee, J. Y.; Zhou,W. J. Phys. Chem. B, 2006, 110: 24606

    12. [12]

      12. Liao, S.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc., 2006, 128: 3504

    13. [13]

      13. Kim, P.; Joo, J. B.; Kim,W.; Kim, J.; Song, I. K.; Yi, J. Catal. Lett., 2006, 112: 213

    14. [14]

      14. Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J.W. Langmuir, 1999, 15: 774

    15. [15]

      15. Chen, Y.; Tang, Y.W.;Wu,W.; Cao, J. M.; Liu, C. P.; Xing,W.; Lu, T. H. Chem. J. Chin. Univ., 2006, 27: 676. [陈煜, 唐亚文, 吴伟, 曹洁明, 刘长鹏, 邢巍, 陆天虹. 高等学校化学学报, 2006, 27: 676]

    16. [16]

      16. Zhao, D.; Xu, B. Q. Phys. Chem. Chem. Phys., 2006, 85: 106

    17. [17]

      17. Luo, J.;Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I. I. S.; Zhong, C. J. Adv. Mater., 2008, 20: 4342

    18. [18]

      18. Liu, Z.; Hu, J. E.;Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. J. Am. Chem. Soc., 2009, 131: 6924

    19. [19]

      19. Ando, Y.; Sasaki, K.; Adzic, R. Electrochem. Commun., 2009, 11: 1135

    20. [20]

      20. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nature Mater., 2008, 7: 333

    21. [21]

      21. Chen, C. H.; Sarma, L. S.;Wang, D. Y.; Lai, F. J.; Andra, C. C. A.; Chang, S. H.; Liu, D. G.; Chen, C. C.; Lee, J. F.; Hwang, B. J. ChemCatChem, 2010, 2: 159

    22. [22]

      22. Liu, J. M.; Meng, H.; Li, J. L.; Liao, S. J.; Bu, J. H. Fuel Cells, 2007, 7: 402

    23. [23]

      23. Gasteiger, H. A.; Markovi, N.; Ross, P. N.; Cairns, E. J. J. Electrochem. Soc., 1994, 141: 1795

    24. [24]

      24. Lobato, J.; Canizares, P.; Rodri , M. A.; Linares, J. J. Appl. Catal. B-Environ., 2009, 91: 269

    25. [25]

      25. Chi, C. F.; Yang, M. C.;Weng, H. S. J. Power Sources, 2009, 193: 462

    26. [26]

      26. Bock, C.; Paque, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc., 2004, 126: 8028

    27. [27]

      27. Liang, Y.; Li, J.; Xu, Q. C.; Hu, R. Z.; Lin, J. D.; Liao, D.W. J. Alloy. Compd., 2008, 465: 296

    28. [28]

      28. Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B, 2004, 108: 8234

    29. [29]

      29. Maiyalagan, T. J. Solid State Electrochem., 2009, 13: 1561


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    6. [6]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1625)
  • Abstract views(3193)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return