Citation:
ZENG Han, LIAO Ling-Wen, LI Ming-Fang, TAO Qian, KANG Jing, CHEN Yan-Xia. Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J]. Acta Physico-Chimica Sinica,
;2010, 26(12): 3217-3224.
doi:
10.3866/PKU.WHXB20101208
-
A novel strategy for the immobilization of laccase onto a glassy carbon electrode with high stability and electrocatalytic performance is presented. Laccase is attached to a matrix of mixed poly aryl amide (PAA) and multiwalled carbon nanotubes (MWCNTs) (denoted Lac/PAA-MWCNTs/GCE) by covalently bonding the surface amine group of laccase to the terminal carboxyl group of PAA and hydrophobic-hydrophobic interaction between MWCNTs and the laccase. The PAA backbone avoids the detachment and denaturing of the laccase, and the intermixed MWCNTs provide high electronic conductivity. The loading of laccase is 56.0 mg·g-1 and more than 68% shows electrochemical activity. The electrode delivers direct electron transfer between the redox center of the laccase and the electrode with two pairs of redox peaks at 0.73 and 0.38 V, which is close to the formal potential of the T1 and T2 Cu-sites (0.78 and 0.39 V (vs NHE)), respectively. The onset potential for O2 reduction reaction (ORR) is ca 0.55 V in a phosphate buffer solution (pH=4.4). The Michaelis constant (KM) of the Lac/PAA-MWCNTs/GEs for O2 is 55.8 μmol·L-1 and the detection limit of oxygen reaches 0.57 μmol·L-1. After 2 months of storage at 4 °C the ORR activity of the Lac/PAA-MWCNTs/GC electrode retains ca 86% of its initial values and the peak potential of the ORR shifts negatively by ca 50 mV. Given the excellent catalytic performance towards ORR and its high stability this strategy will be widely applicable to the development of an enzyme-based cathode for biofuel cells and amperometric biosensors for oxygen.
-
-
-
[1]
1. Xu, F. Biochemistry, 1996, 35: 7608
-
[2]
2. Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem., 2002, 277: 37663
-
[3]
3. Zheng,W.; Li, Q. F.; Yan, Y. M.; Zhang, J.; Mao, L. Q. Electroanalysis, 2006, 18: 587
-
[4]
4. Yarapolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; rton, L. Bioelectrochem. Bioenerg., 1996, 40: 49
-
[5]
5. Shleev, S.; Kasmi, A. E.; Ruzgas, T.; rton, L. Electrochem. Commun., 2004, 6: 934
-
[6]
6. Liu, Y.; Qu, X. H.; Guo, H.W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosensors & Bioelectronics, 2006, 21: 2195
-
[7]
7. Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem., 2008, 80: 8020
-
[8]
8. Tarasevich, M. R.; Bogdanovskaya, V. A.; Kuznetsova, L. N. Russ. J. Phys. Chem., 2001, 37: 969
-
[9]
9. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bileswicz, R. Electrochimica Acta, 2008, 53: 3983
-
[10]
10. Blanford, C. F.; Heath, R. S.; Armstrong, F. A. Chem. Commun., 2007: 1710
-
[11]
11. Blanford, C. F.; Foster, C. E.; Heath, R. E.; Armstrong, F. A. Faraday Discuss., 2008, 140: 319
-
[12]
12. Farneth,W. E.; Diner, B. A.; Gierke, T. D.; D'Amore, M. B. J. Electroanal. Chem., 2005, 581: 190
-
[13]
13. Katz, E.; Sheeney-Haj-Ichia, L.;Willner, I. Angew. Chem. Int. Edit., 2004, 43: 3292
-
[14]
14. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun., 2004, 6: 237
-
[15]
15. Ohara, T. J.; Raja palan, R.; Heller, A. Anal. Chem., 1993, 65: 3512
-
[16]
16. Trudeau, F.; Daigle, F.; Leech, D. Anal. Chem., 1997, 69: 882
-
[17]
17. Ackermann, Y.; Guschin, D. A.; Eckhard, K.; Shleev, S.; Schuhmann, W. Electrochem. Commun., 2010, 12: 640
-
[18]
18. Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B, 2009, 113: 6062
-
[19]
19. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Qu Y. B.; Gao, P. J. J. Phys. Chem. C, 2008, 112: 14781
-
[20]
20. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bilewicz, R. Electrochem. Commun., 2007, 9: 115
-
[21]
21. Fei, J. F.; Song, H. Y.; Palmore, G. T. R. Chem. Mater., 2007, 19(7): 1565
-
[22]
22. Katz, E.;Willner, I.; Kotlyar, A. B. J. Electroanal. Chem., 1999, 479: 64
-
[23]
23. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann,W.; Kulesza, P. J. Anal. Chem., 2008, 80: 7643
-
[24]
24. Liu, Y.;Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosensors & Bioelectronics, 2005, 21: 984
-
[25]
25. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Gao, P. J. J. Phys. Chem. C, 2009, 113: 2521
-
[26]
26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280: 1253
-
[27]
27. Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.;Wang, J. T. Acta Chimica Sinica, 2005, 63(14): 1343. [黄俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14): 1343]
-
[28]
28. Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Energies, 2010, 3: 803
-
[1]
-
-
-
[1]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[2]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[5]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[6]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[7]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[8]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[9]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[10]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[13]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[14]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[15]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[16]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[17]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[18]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[19]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[20]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[1]
Metrics
- PDF Downloads(1119)
- Abstract views(2778)
- HTML views(21)