Citation: ZENG Han, LIAO Ling-Wen, LI Ming-Fang, TAO Qian, KANG Jing, CHEN Yan-Xia. Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3217-3224. doi: 10.3866/PKU.WHXB20101208 shu

Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior

  • Received Date: 7 July 2010
    Available Online: 29 October 2010

    Fund Project: 国家自然科学基金(20773116) (20773116)国家杰出青年基金(20474060)资助项目 (20474060)

  • A novel strategy for the immobilization of laccase onto a glassy carbon electrode with high stability and electrocatalytic performance is presented. Laccase is attached to a matrix of mixed poly aryl amide (PAA) and multiwalled carbon nanotubes (MWCNTs) (denoted Lac/PAA-MWCNTs/GCE) by covalently bonding the surface amine group of laccase to the terminal carboxyl group of PAA and hydrophobic-hydrophobic interaction between MWCNTs and the laccase. The PAA backbone avoids the detachment and denaturing of the laccase, and the intermixed MWCNTs provide high electronic conductivity. The loading of laccase is 56.0 mg·g-1 and more than 68% shows electrochemical activity. The electrode delivers direct electron transfer between the redox center of the laccase and the electrode with two pairs of redox peaks at 0.73 and 0.38 V, which is close to the formal potential of the T1 and T2 Cu-sites (0.78 and 0.39 V (vs NHE)), respectively. The onset potential for O2 reduction reaction (ORR) is ca 0.55 V in a phosphate buffer solution (pH=4.4). The Michaelis constant (KM) of the Lac/PAA-MWCNTs/GEs for O2 is 55.8 μmol·L-1 and the detection limit of oxygen reaches 0.57 μmol·L-1. After 2 months of storage at 4 °C the ORR activity of the Lac/PAA-MWCNTs/GC electrode retains ca 86% of its initial values and the peak potential of the ORR shifts negatively by ca 50 mV. Given the excellent catalytic performance towards ORR and its high stability this strategy will be widely applicable to the development of an enzyme-based cathode for biofuel cells and amperometric biosensors for oxygen.

  • 加载中
    1. [1]

      1. Xu, F. Biochemistry, 1996, 35: 7608

    2. [2]

      2. Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem., 2002, 277: 37663

    3. [3]

      3. Zheng,W.; Li, Q. F.; Yan, Y. M.; Zhang, J.; Mao, L. Q. Electroanalysis, 2006, 18: 587

    4. [4]

      4. Yarapolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; rton, L. Bioelectrochem. Bioenerg., 1996, 40: 49

    5. [5]

      5. Shleev, S.; Kasmi, A. E.; Ruzgas, T.; rton, L. Electrochem. Commun., 2004, 6: 934

    6. [6]

      6. Liu, Y.; Qu, X. H.; Guo, H.W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosensors & Bioelectronics, 2006, 21: 2195

    7. [7]

      7. Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem., 2008, 80: 8020

    8. [8]

      8. Tarasevich, M. R.; Bogdanovskaya, V. A.; Kuznetsova, L. N. Russ. J. Phys. Chem., 2001, 37: 969

    9. [9]

      9. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bileswicz, R. Electrochimica Acta, 2008, 53: 3983

    10. [10]

      10. Blanford, C. F.; Heath, R. S.; Armstrong, F. A. Chem. Commun., 2007: 1710

    11. [11]

      11. Blanford, C. F.; Foster, C. E.; Heath, R. E.; Armstrong, F. A. Faraday Discuss., 2008, 140: 319

    12. [12]

      12. Farneth,W. E.; Diner, B. A.; Gierke, T. D.; D'Amore, M. B. J. Electroanal. Chem., 2005, 581: 190

    13. [13]

      13. Katz, E.; Sheeney-Haj-Ichia, L.;Willner, I. Angew. Chem. Int. Edit., 2004, 43: 3292

    14. [14]

      14. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun., 2004, 6: 237

    15. [15]

      15. Ohara, T. J.; Raja palan, R.; Heller, A. Anal. Chem., 1993, 65: 3512

    16. [16]

      16. Trudeau, F.; Daigle, F.; Leech, D. Anal. Chem., 1997, 69: 882

    17. [17]

      17. Ackermann, Y.; Guschin, D. A.; Eckhard, K.; Shleev, S.; Schuhmann, W. Electrochem. Commun., 2010, 12: 640

    18. [18]

      18. Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B, 2009, 113: 6062

    19. [19]

      19. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Qu Y. B.; Gao, P. J. J. Phys. Chem. C, 2008, 112: 14781

    20. [20]

      20. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bilewicz, R. Electrochem. Commun., 2007, 9: 115

    21. [21]

      21. Fei, J. F.; Song, H. Y.; Palmore, G. T. R. Chem. Mater., 2007, 19(7): 1565

    22. [22]

      22. Katz, E.;Willner, I.; Kotlyar, A. B. J. Electroanal. Chem., 1999, 479: 64

    23. [23]

      23. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann,W.; Kulesza, P. J. Anal. Chem., 2008, 80: 7643

    24. [24]

      24. Liu, Y.;Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosensors & Bioelectronics, 2005, 21: 984

    25. [25]

      25. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Gao, P. J. J. Phys. Chem. C, 2009, 113: 2521

    26. [26]

      26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280: 1253

    27. [27]

      27. Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.;Wang, J. T. Acta Chimica Sinica, 2005, 63(14): 1343. [黄俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14): 1343]

    28. [28]

      28. Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Energies, 2010, 3: 803


  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    20. [20]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

Metrics
  • PDF Downloads(1119)
  • Abstract views(2778)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return