Citation: ZHANG Fang, YUAN Chang-Zhou, ZHANG Xiao-Gang, ZHANG Luo-Jiang, XU Ke. 5-Sulfosalicylic Acid-Assisted Hydrothermal Synthesis and Supercapacitive Properties of Co-Ni Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3175-3180. doi: 10.3866/PKU.WHXB20101141 shu

5-Sulfosalicylic Acid-Assisted Hydrothermal Synthesis and Supercapacitive Properties of Co-Ni Layered Double Hydroxides

  • Received Date: 6 July 2010
    Available Online: 20 October 2010

    Fund Project: 国家重点基础研究发展计划项目(973)(2007CB209703) (973)(2007CB209703)国家自然科学基金(20633040, 20873064)资助 (20633040, 20873064)

  • Co-Ni layered double hydroxides (CoxNi1-x LDHs) were successfully synthesized by a 5- sulfosalicylic acid (SSA)-assisted hydrothermal process. Structural and morphological characterizations were performed using powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results reveal that different morphologies of CoxNi1-x LDHs could be obtained by tuning the Co/Ni molar ratio. The CoxNi1-x LDHs exhibit petal-like nanospheres that are composed of nanoflakes at a Co molar fraction of 0.24. The LDH of this structure has a specific capacitance of 1735 F·g-1 at a current density of 1 A·g-1 as determined by cyclic voltammetry and galvanostatic charge-discharge.

  • 加载中
    1. [1]

      1. Conway, B. E. J. Electrochem. Soc., 1991, 138: 1539

    2. [2]

      2. Miller, J. R. Electrochim. Acta, 2006, 52: 1703

    3. [3]

      3. Jiang, Q.; Qu, M. Z.; Zhang, B. L.;Yu, Z. L. J. Inorg. Mater., 2002, 17(4): 649

    4. [4]

      [江奇, 瞿美臻, 张伯兰, 于作龙. 无机材料学 报, 2002, 17(4): 649]

    5. [5]

      4. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater., 2010, 22: E28

    6. [6]

      5. Wohlfahrt-Mehrens, M.; Schenk, J.;Wilde, P. M.; Abdelmula, E.; Axmann, P.; Garche, J. J. Power Sources, 2002, 105: 182

    7. [7]

      6. Liu, X. M.; Zhang, X. G. Chin. J. Appl. Chem., 2003, 20(6): 524

    8. [8]

      [刘献明, 张校刚. 应用化学, 2003, 20(6): 524]

    9. [9]

      7. Wang, Y.; Yang,W. S.; Zhang, S. C.; Evans, D. G.; Duan, X. J. Electrochem. Soc., 2005, 152: A2130

    10. [10]

      8. Zolfaghari, A.; Ataherian, F.; Ghaemi, M.; Gholami, A. Electrochim. Acta, 2007, 52: 2806

    11. [11]

      9. Cao, H. Q.; Zheng, H.; Liu, K. Y.;Warner, J. H. ChemPhysChem, 2009, 11: 489

    12. [12]

      10. Wang, H.; Fan, G. L.; Zheng, C.; Xiang X.; Li, F. Ind. Eng. Chem. Res., 2010, 49: 2759

    13. [13]

      11. Xiao, T.; Tang, Y.W.; Jia, Z. Y.; Li, D.W.; Hu, X. Y.; Li, B. H.; Luo, L. J. Nanotechnology, 2009, 20: 475603

    14. [14]

      12. Marzotto, A.; Clemente, D. A.; Gerola, T.; Valle, G. Polyhedron, 2001, 20: 1079

    15. [15]

      13. Kushi, Y.; Hosoo, T.; Kuroya, H. J. Chem. Soc. D, 1970: 397

    16. [16]

      14. Hu, Z. A.; Xie, Y. L.;Wang, Y. X.;Wu, H. Y.; Yang, Y. Y.; Zhang, Z. Y. Electrochim. Acta, 2009, 54: 2737

    17. [17]

      15. Zhang, L. Y.; Lin, Y. J.; Tuo, Z. J.; Evans, D. G.; Li, D. Q. J. Solid State Chem., 2007, 180: 1230

    18. [18]

      16. Yin,W. Y.; Chen, X.; Cao, M. H.; Hu, C.W.;Wei, B. Q. J. Phys. Chem. C, 2009, 113: 15897

    19. [19]

      17. Xing, Y.; Li, D. Q.; Ren, L. L.; Evans, D. G.; Duan, X. Acta Chim. Sin., 2003, 61(2): 267

    20. [20]

      [邢颖, 李殿卿, 任玲玲, Evans D. G., 段雪. 化学学报, 2003, 61(2): 267]

    21. [21]

      18. Perez-Ramirez, J.; Mul, G.; Kapteijn, F.; Moulijn, J. A. J. Mater. Chem., 2001, 11: 821

    22. [22]

      19. Villegas, J. C.; Giraldo, O. H.; Laubernds K.; Suib, S. L. Inorg. Chem., 2003, 42: 5621

    23. [23]

      20. Murakami, Y.; Takagi, M. Bull. Chem. Soc. Jpn., 1964, 37: 268

    24. [24]

      21. Mentasti, E.; Secco, F.; Venturini, M. Inorg. Chem., 1980, 19: 3528

    25. [25]

      22. Wang, H. L.; Gao, Q. M.; Hu, J. J. Power Sources, 2010, 195: 3017

    26. [26]

      23. Zhang, X. G.; Liu, X. M.; Bao, S. J.;Wang, Y. G. Chin. J. Inorg. Chem., 2004, 20(1): 94

    27. [27]

      [张校刚, 刘献明, 包淑娟, 王永刚. 无机 化学学报, 2004, 20(1): 94]


  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    10. [10]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    13. [13]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    14. [14]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    19. [19]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1648)
  • Abstract views(3405)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return