Citation: ZHAO Fu-Zhen, ZENG Peng-Hui, JI Sheng-Fu, YANG Xiao, LI Cheng-Yue. Catalytic Combustion of Toluene over CuxCo1?x/Al2O3/FeCrAl Monolithic Catalysts[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3285-3290. doi: 10.3866/PKU.WHXB20101137 shu

Catalytic Combustion of Toluene over CuxCo1?x/Al2O3/FeCrAl Monolithic Catalysts

  • Received Date: 9 June 2010
    Available Online: 19 October 2010

    Fund Project: 国家自然科学基金(20473009)资助项目 (20473009)

  • A series of CuxCo1-x/Al2O3/FeCrAl (x=0-1) catalysts were prepared using an FeCrAl alloy as support, a boehmite primer sol as the first washcoat layer and copper as well as cobalt oxides as the active washcoat layer. The structure of the catalysts was characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and temperatureprogrammed reduction (TPR). Toluene was chosen as the model compound to evaluate the catalytic activity in a conventional fixed-bed quartz reactor. Results indicate that a Cu-Co-O solid solution phase was present when the content of Cu in the catalysts was low and a CuO phase was present when the content of Cu was high. Both Co2+ and Co3+ were present on the surface of the obtained monolithic catalysts while Cu2+ was the main Cu species. The addition of a proper amount of copper oxide improved the reducibility of the cobalt oxide, which enhanced the catalytic activity of the catalysts. All the obtained catalysts showed od activity for the catalytic combustion of toluene. The Cu0.5Co0.5/Al2O3/FeCrAl catalyst had the best catalytic activity, and toluene was totally oxidized at 374 °C over it.

  • 加载中
    1. [1]

      1. Scire, S.; Minico, S.; Crisafulli, C.; Satriano, C.; Pistone, A. Appl. Catal. B-Environ., 2003, 40: 43

    2. [2]

      2. Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ., 2008, 81: 56

    3. [3]

      3. Li,W. B.; ng, H. Acta Phys. -Chim. Sin., 2010, 26: 885

    4. [4]

      4. Palacio, L. A.; Silva, J. M.; Ribeiro, F. R.; Ribeiro, M. F. Catal. Today, 2008, 133-135: 502

    5. [5]

      5. Huang, H.; Liu, Y.; Tang,W.; Chen, Y. Catal. Commun., 2008, 9: 55

    6. [6]

      6. Kim, S. C.; Shim,W. G. Appl. Catal. B: Environ., 2008, 79: 149

    7. [7]

      7. Antunes, A. P.; Ribeiro, M. F.; Silva, J. M.; Ribeiro, F. R.; Magnoux, P.; Guisnet, M. Appl. Catal. B- Environ., 2001, 33: 149

    8. [8]

      8. Kovanda, F.; Jiratova, K.; Rymes, J.; Kolousek, D. Appl. Clay Sci., 2001, 18: 71

    9. [9]

      9. Lu, C. Y.;Wey, M. Y.; Chen, L. I. Appl. Catal. A- Gen., 2007, 325: 163

    10. [10]

      10. Avila, P.; Montes, M.; Miro, E. E. Chem. Eng. J., 2005, 109: 11

    11. [11]

      11. Barbero, B. P.; Costa-Almeida, L.; Sanz, O.; Morales, M. R.; Cadus, L. E.; Montes, M. Chem. Eng. J., 2008, 139: 430

    12. [12]

      12. Cesar, D. V.; Perez, C. A.; Salim, V. M. M.; Schmal, M. Appl. Catal. A- Gen., 1999, 176: 205

    13. [13]

      13. Radwan, N. R. E.; Mokhtar, M.; El-Shobaky, G. A. Appl. Catal. A- Gen., 2003, 241: 77

    14. [14]

      14. Zou, H.; Dong, X.; Lin,W. Appl. Surf. Sci., 2006, 253: 2893

    15. [15]

      15. Av uropoulos, G.; Ioannides, T.; Matralis, H. Appl. Catal. B: Environ., 2005, 56: 87

    16. [16]

      16. Zhu, P.; Li, J.; Zuo, S.; Zhou, R. Appl. Surf. Sci., 2008, 255: 2903

    17. [17]

      17. Khassin, A. A.; Yurieva, T. M.; Kaichev, V. V.; Bukhtiyarov, V. I.; Budneva, A. A.; Paukshtis, E. A.; Parmon, V. N. J. Mol. Catal. A: Chem., 2001, 175: 189

    18. [18]

      18. Zhu, J.; Gao, Q. Microporous Mesoporous Mater., 2009, 124: 144

    19. [19]

      19. Wang C. H. Chemosphere, 2004, 55: 11

    20. [20]

      20. LiW. B.; Zhuang M.;Wang J.X. Catal.Taday, 2008, 137: 340

    21. [21]

      21. Haneda, M.; Kintaichi, Y.; Bion, N.; Hamada, H. Appl. Catal. B: Environ., 2003, 46: 473

    22. [22]

      22. Tang, C.W.; Kuo, M. C.; Lin, C. J.;Wang, C. B.; Chien, S. H. Catal. Today, 2008, 131: 520

    23. [23]

      23. Zou, Z. Q.; Meng, M.; Zha, Y. Q. J. Alloys Compd., 2009, 470: 96

    24. [24]

      24. Liu, L.; Chen, Y.; Dong, L.; Zhu, J.;Wan, H.; Liu, B.; Zhao, B.; Zhu, H.; Sun, K.; Dong, L.; Chen, Y. Appl. Catal. B: Environ., 2009, 90: 105

    25. [25]

      25. Tang, X.; Zhang, B.; Li, Y.; Xu, Y.; Xin, Q.; Shen,W. Appl. Catal. A: Gen., 2005, 288: 116

    26. [26]

      26. Moretti, E.; Lenarda, M.; Storaro, L.; Talon, A.; Montanari, T.; Busca, G.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Turco, M.; Bagnasco, G.; Frattini, R. Appl. Catal. A- Gen., 2008, 335: 46


  • 加载中
    1. [1]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(1358)
  • Abstract views(2485)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return