Citation:
COLE Christine Lind, QIAN Hong. Simple Chemical Model for Facilitated Transport with an Application to Wyman-Murray Facilitated Diffusion[J]. Acta Physico-Chimica Sinica,
;2010, 26(11): 2857-2864.
doi:
10.3866/PKU.WHXB20101129
-
A simple chemical kinetic model is developed which describes the behavior of small ligands that can bind reversibly with large carrier molecules with slower intrinsic rates of transport. Under certain conditions, which we describe, the presence of the slower carriers in fact enhances the transport of the ligand. This is the chemical version of Wyman-Murray's facilitated diffusion. The simple model illuminates the driven nature of the enhancement of the transport by the carrier molecules: we show that the facilitated transport depends crucially on a“grand canonical” setting in which the free ligand concentrations are kept constant in the presence of the facilitating protein, in contrast to a canonical setting with constant total ligand concentrations. Results from the simple model are compared to previous experimental and theoretical results for Wyman-Murray facilitated diffusion of oxygen and carbon monoxide in muscle. A relation is established between the association-dissociation rates and the down-stream ligand concentration, or back pressure for oxygen, required for the facilitation effect to occur.
-
-
-
[1]
1. Keener, J. P.; Sneyd, J. Mathematical physiology: cellular physiology, interdisciplinary applied mathematics. NewYork: Springer-Verlag, 1998
-
[2]
2. Fersht, A. Enzyme structure and mechanism. 2nd ed. NewYork: W. H. Freeman and Company, 1985
-
[3]
3. Roughton, F. Proc. R. Soc. Lond. B, 1932, 111: 1
-
[4]
4. Wittenberg, J. B. J. Biol. Chem., 1966, 241: 104
-
[5]
5. Wittenberg, J. B. Physiol. Rev., 1970, 50: 559
-
[6]
6. Hemmingsen, E. Comp. Biochem. Physiol., 1963, 10: 239
-
[7]
7. Scholander, P. Science, 1965, 149: 876
-
[8]
8. Murray, J. D. Proc. R. Soc. Lond. B-Biol. Sci., 1971, 178: 95
-
[9]
9. Wyman, J. J. Biol. Chem., 1966, 241: 115
-
[10]
10. Rubinow, S. I.; Dembo, M. Biophys. J., 1977, 18: 29
-
[11]
11. Kreuzer, F.; Hoofd, L. J. Respir. Physiol., 1970, 8: 280
-
[12]
12. Murray, J. D.; Wyman, J. J. Biol. Chem., 1971, 246: 5903
-
[13]
13. Murray, J. J. Theoret. Biol., 1974, 47: 115
-
[14]
14. Fletcher, J. E. Biophys. J., 1980, 29: 437
-
[15]
15. Meyer, R. A.; Sweeney, H. L.; Kushmerick, M. J. Am. J. Physiol., 1984, 246: C365
-
[16]
16. Qian, H. Annu. Rev. Phys. Chem., 2007, 58: 113
-
[17]
17. Hill, T. L. Linear aggregation theory in cell biology. NewYork: Springer-Verlag, 1987
-
[18]
18. King, E. L.; Altman, C. J. Phys. Chem., 1956, 60: 1375
-
[19]
19. Hill, T. L. Free energy transduction and biochemical cycle kinetics. New York: Dover Publications, 2004
-
[20]
20. Qi, F.; Dash, R. K.; Han, Y.; Beard, D. A. BMC Bioinformatics, 2009, 10: 238
-
[21]
21. Murray, J. D. Mathematical biology I: an introduction. 3rd ed. New York: Springer, 2007
-
[22]
22. Nedelman, J.; Rubinow, S. I. J. Math. Biol., 1981, 12: 73
-
[23]
23. Riveros-Moreno, V.; Wittenberg, J. B. J. Biol. Chem., 1972, 247: 895
-
[24]
24. Britton, N. F. Nonlinear Analysis, Theory, Methods& Applications. 1979, 3: 361
-
[25]
25. Kreuzer, F.; Hoofd, L. Adv. Exp. Med. Biol., 1976, 75: 207
-
[26]
26. Mochizuki, M.; Forster, R. E. Science, 1962, 138: 897
-
[1]
-
-
-
[1]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[2]
Yinglan Yu , Sajid Hussain , Jianping Qi , Lei Luo , Xuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673
-
[3]
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
-
[4]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
-
[5]
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
-
[6]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[7]
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
-
[8]
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
-
[9]
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
-
[10]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[11]
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
-
[12]
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
-
[13]
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
-
[14]
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
-
[15]
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
-
[16]
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
-
[17]
Yihan Zhou , Duo Gao , Yaying Wang , Li Liang , Qingyu Zhang , Wenwen Han , Jie Wang , Chunliu Zhu , Xinxin Zhang , Yong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967
-
[18]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[19]
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
-
[20]
Xiaohan Zhang , Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419
-
[1]
Metrics
- PDF Downloads(1234)
- Abstract views(2205)
- HTML views(28)