Citation: RAN Jing-Yu, ZHAO Liu-Jie. Thermodynamic Analysis of Low Temperature Methane Wet-Air Reforming in a Microcombustor[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2899-2906. doi: 10.3866/PKU.WHXB20101121 shu

Thermodynamic Analysis of Low Temperature Methane Wet-Air Reforming in a Microcombustor

  • Received Date: 12 April 2010
    Available Online: 28 September 2010

    Fund Project: 国家自然科学基金(50876118) (50876118)教育部新世纪优秀人才计划(NCET-08-0605)资助项目 (NCET-08-0605)

  • We studied the effects of reaction pressure, molar ratios of air to methane and steam to methane on the reforming process at temperatures below 973 K theoretically. Their reasonable ranges were also studied. We also compared the performance of a methane autothermal reforming system and a non-oxygen system. Results show that methane autothermal reforming occurs much more easily at temperatures above 633 K, reaction pressures below 0.10 MPa, a molar ratio of air to methane of 2.0, and a molar ratio of steam to methane between 1.0 and 2.5. At a definite methane mass flow, a higher methane conversion rate and hydrogen yield can be obtained at lower temperatures and in lesser steam to methane ratio in an autothermal reforming systemcompared with a non-oxygen system.

     

  • 加载中
    1. [1]

      1. Hua, J. S.; Wu, M.; Kumar, K. Chem. Eng. Sci., 2005, 60(13): 3497

    2. [2]

      2. Wang, Y.; Chin, Y. H.; Rozmiarek, R. T.; Johnson, B. R.; Gao, Y.; Watson, J.; Tonkovich, A. Y. L.; Vander Wiel, D. P. Catal. Today, 2004, 98(4): 575

    3. [3]

      3. Ran, J. Y.; Hu, J. H. Proceedings of the Chinese Society for Electrical Engineering, 2007, 27(8): 42 [冉景煜,胡建红. 中国电机工程学报, 2007, 27(8): 42]

    4. [4]

      4. Zhang, L.; Yan, Y. F. Microfabrication Technology, 2008, 1: 49 [张力,闫云飞. 微细加工技术, 2008, 1: 49]

    5. [5]

      5. Tonkovich, A. L. Y.; Yang, B.; Perry, S. T.; Fitzgerald, S. P.; Wang, Y. Catal. Today, 2007, 120(1): 21

    6. [6]

      6. Dias, J. A. C.; Assaf, J. M. J. Power Sources, 2005, 139(1/2): 176

    7. [7]

      7. Ayabe, S.; Omoto, H.; Utaka, T. Appl. Catal. A-Gen., 2003, 241 (1/2): 261

    8. [8]

      8. Chan, S. H.; Ding, O. L. Int. J. Hydrog. Energy, 2008, 33: 633

    9. [9]

      9. Zhang L.; Yan, Y. F. Journal of Chemical Industry and Engineering (China), 2009, 60(3): 627 [张力,闫云飞. 化工学报, 2009, 60(3): 627]

    10. [10]

      10. Hu, G. X.; Wang, M. L.; Li, Y. H. Proceedings of the Chinese Society for Electrical Engineering, 2004, 24(1): 201 [胡国新, 王明磊,李艳红. 中国电机工程学报, 2004, 24(1): 201]

    11. [11]

      11. Lee, S. H. D.; Applegate, D. V.; Ahmed, S.; Calderone, S. G.; Harvey, T. L. Int. J. Hydrog. Energy, 2005, 30: 829

    12. [12]

      12. Ahmed, S.; Krumpelt, M. Int. J. Hydrog. Energy, 2001, 26: 291

    13. [13]

      13. Christensen, T. S.; Primdahl, I. I. Hydrocarbon Process Int. Ed., 1994, 5: 39

    14. [14]

      14. Chen, Z. Y. Chemical thermodynamics and refractory compositions. Beijing: Metallurgical Industry Press, 2005: 162- 172 [陈肇友.化学热力学与耐火材料.北京:冶金工业出版社, 2005: 162-172]

    15. [15]

      15. Furjes, P.; Bognar, G.; Barsony, I. Sensor Actuat. B-Chem., 2006, 120(1): 270

    16. [16]

      16. Ye, D. L. Practical handbook of thermodynamic data of inorganic. Beijing: Metallurgical Industry Press, 2002: 1-9, 228-1183 [叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社, 2002: 1-9, 228-1183]


  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Shiyu Zhang Jing Cai Xinran Hou Qing Zhou . A Comparative Study on Higher Chemistry Education Curriculum between China and the United Kingdom. University Chemistry, 2024, 39(11): 397-405. doi: 10.12461/PKU.DXHX202401050

    3. [3]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    9. [9]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    19. [19]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(991)
  • Abstract views(3001)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return