Citation: HU Qiong, WANG Guo-Ying, OU Jia-Ming, WANG Rui-Li. Effect ofWater Ligation on the Redox Potential and Infrared Spectra of Chlorophyll-a[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 3035-3040. doi: 10.3866/PKU.WHXB20101116 shu

Effect ofWater Ligation on the Redox Potential and Infrared Spectra of Chlorophyll-a

  • Received Date: 18 May 2010
    Available Online: 23 September 2010

    Fund Project: 国家自然科学基金(10764006)资助项目 (10764006)

  • In the reaction center of photosystem I the accessory electron transfer cofactors are two monomeric chlorophyll-a molecules that are ligated to two water molecules. To study the effect of water ligation on the redox potential and vibrational properties of chlorophyll-a, we built three molecular models of water ligation of chlorophyll-a based on the X-ray crystal structure of photosystem I. Then, we systematically calculated the geometries, vibrational frequencies, bond dissociation energies, and redox potentials of these models using density functional theory. The calculations were conducted in the gas phase, water, and a simulated protein environment. In addition, three different basis sets were employed to investigate the influence of the basis set on the calculation results. 15N, 2H, and 13C labeled spectra of the models in the gas phase were also calculated. Our results show that the water ligand causes the Mg ion of chlorophyll-a to move away fromthe center of the porphyrin ring so that the Mg—N bond lengths increase and the Mg centered angles decrease. When a nearby amino acid, asparagine (ASNB591), provides a hydrogen bond to the water that is axial ligand to the chlorophyll-a, these changes increase further. Additionally, the Mg—O bond distance decreases, the dissociation energy increases, and the redox potential also decreases. Furthermore, the redox potentials of the molecules and their bond dissociation energies decrease as the relative dielectric constant of the media and the basis sets increase. However, differences in the frequencies of the corresponding carbonyl groups and the C=C vibrations of the porphyrin ring in the three models are less than 7 cm-1, and the differences in frequency shift upon isotope labeling between the models are less than 3 cm-1. These results provide useful information for further studies of the structural and functional properties of chlorophyll-a in the photosynthetic reaction center.

     

  • 加载中
    1. [1]

      1. Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Saenger, W.; Krauss, N. Nature, 2001, 411: 909

    2. [2]

      2. Wang, R.; Parameswaran, S.; Hastings, G. Vibrational Spectroscopy, 2007, 44: 357

    3. [3]

      3. Vernon, L. P.; Seely, G. R. The chlorophylls. NewYork: Academic Press, 1966: 187-251

    4. [4]

      4. Dolphin, D. The porphyrins. NewYork: Academic Press, 1978: 430-455

    5. [5]

      5. Fromme, P.; Jordan, P.; Krauβ, N. Biochimica et Biophysica Acta, 2001, 1507: 5

    6. [6]

      6. Matyushov, D. V. J. Phys. Chem. B, 2006, 110: 10095

    7. [7]

      7. Webber, A. N.; Lubitz, W. Biochimica et Biophysica Acta, 2001, 1507: 61

    8. [8]

      8. Krabben, L.; Schlodder, E.; Jordan, R.; Carbonera, D.; Giacometti, G.; Lee, H.; Webber, A. N.; Lubitz, W. Biochemistry, 2000, 39: 13012

    9. [9]

      9. Ramesh, V. M.; Gibasiewicz, K.; Su, L.; Bingham, S. E.;Webber, A. N. Biochimica et Biophysica Acta, 2007, 1767: 151

    10. [10]

      10. Holzwarth, A. R.; Muller, M. G.; Niklas, J.; Lubitz, W. Biophysical Journal, 2006, 90: 552

    11. [11]

      11. Giera, W.; Ramesh, V. M.; Webber, A. N.; Stokkum, I. V.; Grondelle, R. V.; Gibasiewicz, K. Biochimica et Biophysica Acta, 2010, 1797: 106

    12. [12]

      12. Zhao, G. J.; Han, K. L. Biophysical Journal, 2008, 94: 38

    13. [13]

      13. Zhao, G. J.; Han, K. L. ChemPhysChem, 2008, 9: 1842

    14. [14]

      14. Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B, 2007, 111: 8940

    15. [15]

      15. Zhao, G. J.; Han, K. L. J. Phys. Chem. A, 2007, 111: 9218

    16. [16]

      16. Heimdal, J.; Jensen, K. P.; Devarajan, A.; Ryde, U. J. Biol. Inorg. Chem., 2007, 12: 49

    17. [17]

      17. O'Malley, P. J. Am. Chem. Soc., 2000, 122: 7798

    18. [18]

      18. Parameswaran, S.; Wang, R.; Hastings, G. J. Phys. Chem. B, 2008, 112: 14056

    19. [19]

      19. Frisch, A.; Dennington II, R. D.; Keith, T. A.; Millam, J. GaussView4.1.2.Wallingford, CT: Gaussian Inc., 2007

    20. [20]

      20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision D.01. Pittsburg, PA: Gaussian Inc., 2004

    21. [21]

      21. Foresman, J. B.; Frisch, A. Exploring chemistry with electronic s tructuremethods. 2nd ed. Pittsburg, PA: Gaussian Inc., 1996: 1-302

    22. [22]

      22. Hasegawa, K.; Noguchi, T. Biochemistry, 2005, 44: 8865

    23. [23]

      23. Shen,Y.; Ryde, U. Journal of Inorganic Biochemistry, 2004, 98: 878

    24. [24]

      24. Reiss, H.; Heller, A. J. Phys. Chem., 1985, 89: 4207

    25. [25]

      25. Nakato, Y.; Chiyoda, T.; Tsubomura, H. Bull. Chem. Soc. Jpn., 1974, 47: 3001

    26. [26]

      26. Sheer, H. Chlorophylls. Boca Raton: CRC Press, 1991: 855-902

    27. [27]

      27. Wheeler, R. A.; Eriksson, L. A. Theoretical biochemistry-processes and properties of biological systems. Amsterdam: Elsevier, 2001: 655-690

    28. [28]

      28. Noguchi, T. Photosynth. Res., 2010, 104: 321

    29. [29]

      29. Berezin, K. V.; Nechaev, V. V.; Ziganshina, O. D. Journal of Structural Chemistry, 2004, 45: 217

    30. [30]

      30. Nabedryk, E.; Leonhard, M.; Mantele, W.; Breton, J. Biochemistry, 1990, 29: 3242

    31. [31]

      31. Breton, J.; Nabedryk, E.; Clerici, A. Biochimica et Biophysica Acta, 2001, 1507: 180

    32. [32]

      32. Wang, R.; Sivakumar, V.; Johnson, T. W.; Hastings, G. Biophysical Journal, 2004, 86: 1061

    33. [33]

      33. Schmid, E. D.; Schneider, F. W.; Siebert, F. Spectroscopy of biological molecules-newadvance. Chichester: Wiley&Sons 1988: 297-300

    34. [34]

      34. Breton, J.; Nabedryk, E.; Leibl, W. Biochemistry, 1999, 38: 11585


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    10. [10]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    11. [11]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    15. [15]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    16. [16]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(1298)
  • Abstract views(3486)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return