Citation: LIU Yan-Yan, CHEN Pan-Ke, LUO Jian-Hui, ZHOU Ge, JIANG Bo. Molecular Simulation of Dilute Polyacrylamide Solutions[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2907-2914. doi: 10.3866/PKU.WHXB20101110 shu

Molecular Simulation of Dilute Polyacrylamide Solutions

  • Received Date: 5 July 2010
    Available Online: 16 September 2010

    Fund Project: 国家自然科学基金(20904035)资助项目 (20904035)

  • Polyacrylamide (PAM) applied to various fields is an important class of linear water-soluble polymers. Therefore, it is of great significance to study the solution properties of PAM. We constructed solution models containing different amounts of water molecules with a mass concentration of about 1 g·mL-1. Using molecular dynamics (MD) simulations we calculated the radius of gyration (Rg) for non-ionic PAM (PAM-H) and anionic PAM (HPAM) in pure water and in aqueous solutions with different mass fractions of NaCl. We discussed their behaviors at different temperatures. We found that the salt tolerance of the polyacrylamides fromthe simulation agreed with the experimental results at different temperatures. Furthermore, the simulation results for all the solution models containing a different amount of water molecules basically showed a similar trend. Considering computational efficiency, the solution model containing 2000 water molecules was selected for our study. The radial distribution functions (RDF) for the oxygen ions and oxygen atoms of the HPAMchain were investigated in NaCl solution model containing 2000 water molecules. The reduced viscosity of HPAM solutions with increasing NaCl mass fractions and a better thickening ability as well as poor salt tolerance compared to PAM-H were explained considering their microstructures as determined by RDF.

     

  • 加载中
    1. [1]

      1. Fang, D. B.; Guo, R. W.; Ha, R. H. Acrylamide polymer. Beijing: Chemical Industry Press, 2006: 1-86 [方道斌,郭睿威,哈润华. 丙烯酰胺聚合物. 北京:化学工业出版社, 2006: 1-86]

    2. [2]

      2. ng, H. J.; Xin, X.; Xu, G. Y.; Wang, Y. J. Colloids Surf. A- Physicochem. Eng. Asp., 2008, 317: 522

    3. [3]

      3. Fang, D. B.; Guo, R. W.; Zhou, S. G.; Zhang, X. C. CIESC Journal, 1966, 47: 645 [方道斌,郭睿威,周少刚,张曦晨.化工学报, 1966, 47: 645]

    4. [4]

      4. Yahaya, G. O.; Ahdab, A. A.; Ali, S. A.; Abu-Sharkh, B. F.; Hamad, E. Z. Polymer, 2001, 42: 3363

    5. [5]

      5. Volpert, E.; Selb, J.; Candau, F. Polymer, 1998, 39: 1025

    6. [6]

      6. Ye, L.; Luo, K. F.; Huang, R. H. Eur. Polym. J., 2000, 36: 1711

    7. [7]

      7. McCormick, C. L.; Nonaka, T.; Johnson, C. B. Polymer, 1988, 29: 731

    8. [8]

      8. Zhang, Y. B.;Wu, C.; Fang, Q.; Zhang, Y. X. Macromolecules, 1996, 29: 2494

    9. [9]

      9. Klucker, R.; Munch, J. P.; Schosseler, F. Macromolecules, 1997, 30: 3839

    10. [10]

      10. Qiu, X. P.; Zhang, X. R.; Ding, M. T. Chem. J. Chin. Univ., 1995, 16(8): 1321 [邱星屏,张雪蓉,丁马太.高等学校化学学报, 1995, 16(8): 1321]

    11. [11]

      11. Zhu,W. P. Plastics Science and Technology, 2002, (5): 23 [朱伟平.塑料科技, 2002, (5): 23]

    12. [12]

      12. Chen, P. F.; Zhang, L. H. China Adhesives, 2007, 6: 52 [陈鹏飞, 张丽华. 中国胶黏剂, 2007, 6: 52]

    13. [13]

      13. Yuan, S. L.; Xu, G. Y.; Cai, Z. T. Colloid Polym. Sci., 2003, 281 (1): 66

    14. [14]

      14. Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Prog. Polym. Sci., 2008, 33(2): 191

    15. [15]

      15. Dalakogloua, G. K.; Karatasosa, K.; Lyulin, S. V.; Lyulin, A. V. Mater. Sci. Eng. B, 2008, 152: 114

    16. [16]

      16. Le, T. C.; Todd, B. D.; Daivis, P. J.; Uhlherr, A. J. Chem. Phys., 2009, 130: 074901

    17. [17]

      17. Drew, P. M.; Adolf, D. B. Soft Matter, 2005, 1: 146

    18. [18]

      18. Tung, K. L.; Lu, K. T.; Ruaan, R. C.; Juin, J. Y. Desalination, 2006, 192: 380

    19. [19]

      19. Kairn, T.; Daivis, P. J.; Matin, M. L.; Snook, I. K. Int. J. Thermophys., 2004, 25(4): 1075

    20. [20]

      20. Liu, Y. M.; Li, G. Z.; Song,W. K.; Wang, J. J. Acta Phys. -Chim. Sin., 2006, 22(12): 1456 [刘永明,李桂芝, 宋万坤,王进军. 物理化学学报, 2006, 22(12): 1456]

    21. [21]

      21. Tao, C. G.; Feng, H. J.; Zhou, J.; Lü, L. H.; Lu, X. H. Acta Phys. - Chim. Sin., 2009, 25(7): 1317 [陶长贵, 冯海军,周健,吕玲红,陆小华.物理化学学报, 2009, 25(7): 1317]

    22. [22]

      22. Shao, Q.; Lü, L. H.; Lu, X. H.; Wei, M. J.; Zhu, Y. D.; Shen, W. F. Acta Phys. -Chim. Sin., 2009, 25(3): 583 [邵庆,吕玲红,陆小华,魏明杰,朱育丹,沈文枫.物理化学学报, 2009, 25(3): 583]

    23. [23]

      23. Rubinstein, M.; Colby, R. Polymer physics. Oxford: Oxford University Press, 2002: Chapter 27

    24. [24]

      24. He, M. J.; Chen, W. X.; Dong, X. X. Polymer physics. Shanghai: Fudan University Press, 2007: 15-73 [何曼君,陈维孝,董西侠. 高分子物理.上海:复旦大学出版社, 2007: 15-73]

    25. [25]

      25. Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. J. Am. Chem. Soc., 1994, 116: 2978

    26. [26]

      26. Soldera, A. Polymer, 2002, 43: 4269

    27. [27]

      27. Li, D. X.; Liu, B. L.; Liu, Y. S.; Chen, C. L. Cryobiology, 2008, 56: 114

    28. [28]

      28. Bishop, M.; Kalos, M. H.; Frisch, H. L. J. Chem. Phys., 1979, 70: 1299

    29. [29]

      29. Pan, R.; Liu, X. K.; Zhang, A. M.; Gu, Y. Comp. Mater. Sci., 2007, 39: 887

    30. [30]

      30. Yang, X. Z. Molecular simulation and polymer materials. Beijing: Science Press, 2002: 43 [杨小震. 分子模拟与高分子材料.北京: 科学出版社, 2002: 43]

    31. [31]

      31. Andersen, H. C. J. Chem. Phys., 1980, 72: 2384

    32. [32]

      32. Zhou, J.; Zhu, Y.; Wang, W. C.; Lu, X. H.; Wang, Y. Y.; Shi, J. Acta Phys. -Chim. Sin., 2002, 18(3): 207 [周健,朱宇, 汪文川, 陆小华,王延儒,时均.物理化学学报, 2002, 18(3): 207]

    33. [33]

      33. Zhou, J.; Lu, X. H.; Wang, Y, R.; Shi, J. CIESC Journal, 2000, 51: 143 [周健,陆小华,王延儒, 时均.化工学报, 2000, 51: 143]


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1699)
  • Abstract views(3763)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return