Citation: WU Wei-Kang, WANG Jia-Li, LIU Su-Qin, HUANG Ke-Long, LIU Yan-Fei. Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2915-2919. doi: 10.3866/PKU.WHXB20101028 shu

Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)

  • Received Date: 14 May 2010
    Available Online: 17 September 2010

    Fund Project: 国家自然科学基金(20976197) (20976197)高等学校博士学科点专项科研基金(20090162120013)资助项目 (20090162120013)

  • The thermal decomposition kinetics of the novel terpolymer, poly(propylene carbonate maleate) (PPCMA), was investigated using thermogravimetric (TG) analysis at different heating rates. A new computational method called nonlinear approximation (NLA) is introduced in this work. The Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira- Sunose (KAS), and NLA methods were used to calculate the apparent activation energy (Ea). The results show that the NLA method is ideal for Ea calculations because of its simpler and more appropriate analysis process. It does, however, give slightly higher average relative errors for Ea compared to the other typical model-free methods. Calculations using the solid-state reaction model-fitting method indicated that the thermal decomposition process was composed of multiple mechanisms. For the whole decomposition process, the values of Ea were between 70 and 135 kJ·mol-1, and the pre-exponential factor (A) varied from5.24×104 to 9.89×107 min-1. The differences in Ea also explain the differences in decomposition temperature between poly(propylene carbonate) (PPC) and PPCMA.

     

  • 加载中
    1. [1]

      1. Santer, B. D.; Taylor, K. E.;Wigley, T. M. L.; Johns, T. C.; Jones, P. D.; Karoly, D. J.; Mitchell, J. F. B.; Oort, A. H.; Penner, J. E.; Ramaswamy, V.; Schwarzkopf, M. D. Nature, 1996, 382: 39

    2. [2]

      2. Meehl, G. A.; Washington,W. M. Nature, 1996, 382: 56

    3. [3]

      3. Broecker,W. S. Science, 1997, 278: 1582

    4. [4]

      4. Kacholia, K.; Reck, R. A. Climatic Change, 1997, 35: 53

    5. [5]

      5. Beckman, E. J. Science, 1999, 283: 946

    6. [6]

      6. Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Polym. Lett., 1969, 7: 287

    7. [7]

      7. Darensbourg, D. J.; Mattew, W. H. Macromolecules, 1995, 28: 7577

    8. [8]

      8. Zhang, N. Y.; Chen, L. B.; Yang, S. Y.; Yu, A. F.; He, S. J. Acta Polym. Sin., 2000: 741

    9. [9]

      9. Plesse, C.; Vidal, F.; Randriamahazaka, H.; Teyssi佴, D.; Chevrot, C. Polymer, 2005, 46: 7771

    10. [10]

      10. Jiang, G. H.; Wang, L.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2006, 47: 12

    11. [11]

      11. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2005, 46: 9501

    12. [12]

      12. Lu, L. B.; Huang, K. L. J. Polym. Sci. Pol. Chem., 2005, 43: 2468

    13. [13]

      13. Liu, Y. F.; Huang, K. L.; Peng, D. M.; Wu, H. Polymer, 2006, 47: 8453

    14. [14]

      14. Flynn, J. H.;Wall, L. A. J. Res. Nat. Bur. Stand. Sect. A, 1966, 70: 487

    15. [15]

      15. Ozawa, T. B. Chem. Soc. Jpn., 1965, 38: 1881

    16. [16]

      16. Kissinger, H. E. Anal. Chem., 1957, 29: 1702

    17. [17]

      17. Akahira, T.; Sunose, T. Res. Rep. Chiba. Inst. Technol., 1971, 16: 22

    18. [18]

      18. Tang, W. J.; Liu, Y. W.; Zhang, H.;Wang, C. X. Thermochim. Acta, 2003, 408: 39

    19. [19]

      19. Tang, W. J.; Chen, D. H.; Wang, C. X. AICHE J., 2006, 52: 2211

    20. [20]

      20. Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, S.; Zhao, X.; Wang, F. Macromol. Symp., 2003, 195: 281

    21. [21]

      21. Vyazovkin, S. J. Comput. Chem., 2001, 22: 178

    22. [22]

      22. Senum, G. I.; Yang, R. T. J. Therm. Anal. Calorim., 1977, 11: 445

    23. [23]

      23. Vyazovkin, S. Thermochim. Acta, 2000, 355: 155

    24. [24]

      24. Opfermann, J. R.; Hammersheim, H. J. Thermochim. Acta, 2003, 397: 1

    25. [25]

      25. Sahin, O.; Tas, E.; Dolas, H. J. Therm. Anal. Calorim., 2007, 89: 123

    26. [26]

      26. Liu, B. Y.; Zhao, X. J.; Wang, X. H.;Wang, F. S. J. Appl. Polym. Sci., 2003, 90: 947

    27. [27]

      27. Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid. Commun., 2006, 27: 1515

    28. [28]

      28. Coats, A. W.; Redfern, J. P. J. Polym. Sci. Polym. Lett., 1965, 3: 917

    29. [29]

      29. Coats, A. W.; Redfern, J. P. Nature, 1964, 201: 68

    30. [30]

      30. Jankovic', B.; Adnad-evic', B.; Jovanovic', J. Thermochim. Acta, 2007, 452: 106


  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(1360)
  • Abstract views(3582)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return