Citation:
WU Wei-Kang, WANG Jia-Li, LIU Su-Qin, HUANG Ke-Long, LIU Yan-Fei. Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)[J]. Acta Physico-Chimica Sinica,
;2010, 26(11): 2915-2919.
doi:
10.3866/PKU.WHXB20101028
-
The thermal decomposition kinetics of the novel terpolymer, poly(propylene carbonate maleate) (PPCMA), was investigated using thermogravimetric (TG) analysis at different heating rates. A new computational method called nonlinear approximation (NLA) is introduced in this work. The Flynn-Wall-Ozawa (FWO), Tang, Kissinger-Akahira- Sunose (KAS), and NLA methods were used to calculate the apparent activation energy (Ea). The results show that the NLA method is ideal for Ea calculations because of its simpler and more appropriate analysis process. It does, however, give slightly higher average relative errors for Ea compared to the other typical model-free methods. Calculations using the solid-state reaction model-fitting method indicated that the thermal decomposition process was composed of multiple mechanisms. For the whole decomposition process, the values of Ea were between 70 and 135 kJ·mol-1, and the pre-exponential factor (A) varied from5.24×104 to 9.89×107 min-1. The differences in Ea also explain the differences in decomposition temperature between poly(propylene carbonate) (PPC) and PPCMA.
-
-
-
[1]
1. Santer, B. D.; Taylor, K. E.;Wigley, T. M. L.; Johns, T. C.; Jones, P. D.; Karoly, D. J.; Mitchell, J. F. B.; Oort, A. H.; Penner, J. E.; Ramaswamy, V.; Schwarzkopf, M. D. Nature, 1996, 382: 39
-
[2]
2. Meehl, G. A.; Washington,W. M. Nature, 1996, 382: 56
-
[3]
3. Broecker,W. S. Science, 1997, 278: 1582
-
[4]
4. Kacholia, K.; Reck, R. A. Climatic Change, 1997, 35: 53
-
[5]
5. Beckman, E. J. Science, 1999, 283: 946
-
[6]
6. Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Polym. Lett., 1969, 7: 287
-
[7]
7. Darensbourg, D. J.; Mattew, W. H. Macromolecules, 1995, 28: 7577
-
[8]
8. Zhang, N. Y.; Chen, L. B.; Yang, S. Y.; Yu, A. F.; He, S. J. Acta Polym. Sin., 2000: 741
-
[9]
9. Plesse, C.; Vidal, F.; Randriamahazaka, H.; Teyssi佴, D.; Chevrot, C. Polymer, 2005, 46: 7771
-
[10]
10. Jiang, G. H.; Wang, L.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2006, 47: 12
-
[11]
11. Jiang, G. H.; Wang, L.; Chen, T.; Yu, H. J.; Dong, X. C.; Chen, C. Polymer, 2005, 46: 9501
-
[12]
12. Lu, L. B.; Huang, K. L. J. Polym. Sci. Pol. Chem., 2005, 43: 2468
-
[13]
13. Liu, Y. F.; Huang, K. L.; Peng, D. M.; Wu, H. Polymer, 2006, 47: 8453
-
[14]
14. Flynn, J. H.;Wall, L. A. J. Res. Nat. Bur. Stand. Sect. A, 1966, 70: 487
-
[15]
15. Ozawa, T. B. Chem. Soc. Jpn., 1965, 38: 1881
-
[16]
16. Kissinger, H. E. Anal. Chem., 1957, 29: 1702
-
[17]
17. Akahira, T.; Sunose, T. Res. Rep. Chiba. Inst. Technol., 1971, 16: 22
-
[18]
18. Tang, W. J.; Liu, Y. W.; Zhang, H.;Wang, C. X. Thermochim. Acta, 2003, 408: 39
-
[19]
19. Tang, W. J.; Chen, D. H.; Wang, C. X. AICHE J., 2006, 52: 2211
-
[20]
20. Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, S.; Zhao, X.; Wang, F. Macromol. Symp., 2003, 195: 281
-
[21]
21. Vyazovkin, S. J. Comput. Chem., 2001, 22: 178
-
[22]
22. Senum, G. I.; Yang, R. T. J. Therm. Anal. Calorim., 1977, 11: 445
-
[23]
23. Vyazovkin, S. Thermochim. Acta, 2000, 355: 155
-
[24]
24. Opfermann, J. R.; Hammersheim, H. J. Thermochim. Acta, 2003, 397: 1
-
[25]
25. Sahin, O.; Tas, E.; Dolas, H. J. Therm. Anal. Calorim., 2007, 89: 123
-
[26]
26. Liu, B. Y.; Zhao, X. J.; Wang, X. H.;Wang, F. S. J. Appl. Polym. Sci., 2003, 90: 947
-
[27]
27. Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid. Commun., 2006, 27: 1515
-
[28]
28. Coats, A. W.; Redfern, J. P. J. Polym. Sci. Polym. Lett., 1965, 3: 917
-
[29]
29. Coats, A. W.; Redfern, J. P. Nature, 1964, 201: 68
-
[30]
30. Jankovic', B.; Adnad-evic', B.; Jovanovic', J. Thermochim. Acta, 2007, 452: 106
-
[1]
-
-
-
[1]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[11]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[14]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[15]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[16]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[17]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[18]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[19]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[20]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[1]
Metrics
- PDF Downloads(1360)
- Abstract views(3582)
- HTML views(27)