Citation: LI Ya-Na. Lü Yang. ZHOU Li-Chuan, CHEN Li, LI Shen-Min, . Atomic Partial Charges for Periodic Systems from First -Principles Calculations[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2793-2800. doi: 10.3866/PKU.WHXB20101009 shu

Atomic Partial Charges for Periodic Systems from First -Principles Calculations

  • Corresponding author:shenmin@dl.cn
  • Received Date: 24 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(20973027, 20633050) 和辽宁省高等学校优秀人才支持计划项目(2007R02)资助 (20973027, 20633050) 和辽宁省高等学校优秀人才支持计划项目(2007R02)

  • We calculated the electrostatic potential (ESP) and electric field (EF) of periodic liquid water systems using the quantum chemistry software package, Crystal. We proposea method to obtain atomic partial charges rapidly for periodic systems based on first-principles calculations. In this method, the average electrostatic potential φmean, which is introduced to meet the periodic boundary condition, is taken as a parameter during the least squares fitting of the ESP from first-principles calculations and used in the Ewald summation. A comparison of the two methods, i.e., ESP and EF fitting, reveals that the relative root mean-square deviation (RMS) of the former method is only 2%-3%, which is one order of magnitude smaller than that of the latter method. In addition, the distribution of the derived atomic partial charges and dipole moments for the water system are discussed using four charge restrained fits.

  • 加载中
    1. [1]

      1. Verstraelen, T.; Speybroeck, V. V.; Waroquier, M. J. Chem. Phys., 2009, 131: 044127

    2. [2]

      2. Mulliken, R. S. J. Chem. Phys., 1955, 23: 1833

    3. [3]

      3. Bader, R. F. W.; Matta, C. F. J. Phys. Chem. A, 2004, 108: 8385

    4. [4]

      4. Breneman, C. M.;Wiberg, K. B. J. Comput. Chem., 1990, 11: 361

    5. [5]

      5. Arroyo, S. T.; Martin, J. A. S.; Carcia, A. H. Chem. Phys. Lett., 2002, 357: 279

    6. [6]

      6. Besler, B. H.; Merz, K. M.; Kollman Jr., P. A. J. Comput. Chem., 1990, 11: 431

    7. [7]

      7. Singh, U. C.; Kollman, P. A. J. Comput. Chem., 1984, 5: 129

    8. [8]

      8. Wang, J.; Wolf, R. M.; Caklwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem., 2004, 25: 1157

    9. [9]

      9. Whitten, A. E.; Mckinnon, J. J.; Spackman, M. A. J. Comput. Chem., 2006, 27: 1063

    10. [10]

      10. Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem., 2000, 21: 1049

    11. [11]

      11. Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; CheathamIII, T. E.; Wang, J.; Ross,W. S.; Simmerling, C.; Darden, T.; Merz, K. M.; Stanton, R. V.; Cheng, A.; Vincent, J. J.; Crowley, M.; Tsui, V.; hlke, H.; Radmer, R.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. AMBER 7 user's Manual. California: University of California, 2002

    12. [12]

      12. Gao, J.; Xia, X. Science, 1992, 258: 631

    13. [13]

      13. Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem., 1990, 11: 700

    14. [14]

      14. Patel, S.; Brooks, C. L. J. Comput. Chem., 2004, 25: 1

    15. [15]

      15. Varekova, R. S.; Koca, J. J. Comput. Chem., 2006, 27: 396

    16. [16]

      16. Sanderson, R. T. Chemical bond and bond energies. NewYork: Academic Press, 1976

    17. [17]

      17. Sanderson, R. T. Polar covalence. NewYork: Academic Press, 1983

    18. [18]

      18. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem., 1987, 91: 6269

    19. [19]

      19. Jorgensen,W. L.; Madura, J. D. J. Am. Chem. Soc., 1983, 105: 1407

    20. [20]

      20. Mahoney, M.W.; Jorgensen, W. L. J. Chem. Phys., 2000, 112: 8910

    21. [21]

      21. Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys., 2004, 120: 2541

    22. [22]

      22. Zhang, Q.; Yang, Z. Z. Chem. Phys. Lett., 2005, 403: 242

    23. [23]

      23. Yang, Z. Z.; Zhang, Q. J. Comput. Chem., 2006, 27: 1

    24. [24]

      24. Yang, Z. Z.; Qian, P. J. Chem. Phys., 2006, 125: 064311

    25. [25]

      25. Wu, Y.; Yang, Z. Z. J. Phys. Chem. A, 2004, 108: 7563

    26. [26]

      26. Ewald, P. P. Ann. Phys., 1921, 64: 253

    27. [27]

      27. Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich- Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, P.; Llunell, M. Crystal 06 user's manual. Torino: University of Torino, 2006

    28. [28]

      28. Spoel, D. v. d.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem., 2005, 26: 1701

    29. [29]

      29. Saunders, V. R.; Freyria-Fava, C.; Dovesi, R.; Salasco, L.; Roetti, C. Mol. Phys., 1992, 77: 629

    30. [30]

      30. Stewart, R. F. d Ju sl Cent Kristalogr, 1982, 17: 1

    31. [31]

      31. Campañá, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput., 2009, 5: 2866

    32. [32]

      32. Shirono, K.; Daiguji, H. Chem. Phys. Lett., 2006, 417: 251


  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    19. [19]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(1302)
  • Abstract views(3002)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return