Atomic Partial Charges for Periodic Systems from First -Principles Calculations
- Corresponding author: , , shenmin@dl.cn
 
	            Citation:
	            
		            LI  Ya-Na. Lü Yang. ZHOU Li-Chuan, CHEN  Li, LI  Shen-Min, . Atomic Partial Charges for Periodic Systems from First -Principles Calculations[J]. Acta Physico-Chimica Sinica,
							;2010, 26(10): 2793-2800.
						
							doi:
								10.3866/PKU.WHXB20101009
						
					
				
					
				
	        
We calculated the electrostatic potential (ESP) and electric field (EF) of periodic liquid water systems using the quantum chemistry software package, Crystal. We proposea method to obtain atomic partial charges rapidly for periodic systems based on first-principles calculations. In this method, the average electrostatic potential φmean, which is introduced to meet the periodic boundary condition, is taken as a parameter during the least squares fitting of the ESP from first-principles calculations and used in the Ewald summation. A comparison of the two methods, i.e., ESP and EF fitting, reveals that the relative root mean-square deviation (RMS) of the former method is only 2%-3%, which is one order of magnitude smaller than that of the latter method. In addition, the distribution of the derived atomic partial charges and dipole moments for the water system are discussed using four charge restrained fits.
	                
1. Verstraelen, T.; Speybroeck, V. V.; Waroquier, M. J. Chem. Phys., 2009, 131: 044127 
										
				
2. Mulliken, R. S. J. Chem. Phys., 1955, 23: 1833 
										
				
3. Bader, R. F. W.; Matta, C. F. J. Phys. Chem. A, 2004, 108: 8385 
										
				
4. Breneman, C. M.;Wiberg, K. B. J. Comput. Chem., 1990, 11: 361 
										
				
5. Arroyo, S. T.; Martin, J. A. S.; Carcia, A. H. Chem. Phys. Lett., 2002, 357: 279 
										
				
6. Besler, B. H.; Merz, K. M.; Kollman Jr., P. A. J. Comput. Chem., 1990, 11: 431 
										
				
7. Singh, U. C.; Kollman, P. A. J. Comput. Chem., 1984, 5: 129 
										
				
8. Wang, J.; Wolf, R. M.; Caklwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem., 2004, 25: 1157 
										
				
9. Whitten, A. E.; Mckinnon, J. J.; Spackman, M. A. J. Comput. Chem., 2006, 27: 1063 
										
				
10. Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem., 2000, 21: 1049 
										
				
11. Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; CheathamIII, T. E.; Wang, J.; Ross,W. S.; Simmerling, C.; Darden, T.; Merz, K. M.; Stanton, R. V.; Cheng, A.; Vincent, J. J.; Crowley, M.; Tsui, V.;  hlke, H.; Radmer, R.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. AMBER 7 user's Manual. California: University of California, 2002 
										
				
12. Gao, J.; Xia, X. Science, 1992, 258: 631 
										
				
13. Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem., 1990, 11: 700 
										
				
14. Patel, S.; Brooks, C. L. J. Comput. Chem., 2004, 25: 1 
										
				
15. Varekova, R. S.; Koca, J. J. Comput. Chem., 2006, 27: 396 
										
				
16. Sanderson, R. T. Chemical bond and bond energies. NewYork: Academic Press, 1976 
										
				
17. Sanderson, R. T. Polar covalence. NewYork: Academic Press, 1983 
										
				
18. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem., 1987, 91: 6269 
										
				
19. Jorgensen,W. L.; Madura, J. D. J. Am. Chem. Soc., 1983, 105: 1407 
										
				
20. Mahoney, M.W.; Jorgensen, W. L. J. Chem. Phys., 2000, 112: 8910 
										
				
21. Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys., 2004, 120: 2541 
										
				
22. Zhang, Q.; Yang, Z. Z. Chem. Phys. Lett., 2005, 403: 242 
										
				
23. Yang, Z. Z.; Zhang, Q. J. Comput. Chem., 2006, 27: 1 
										
				
24. Yang, Z. Z.; Qian, P. J. Chem. Phys., 2006, 125: 064311 
										
				
25. Wu, Y.; Yang, Z. Z. J. Phys. Chem. A, 2004, 108: 7563 
										
				
26. Ewald, P. P. Ann. Phys., 1921, 64: 253 
										
				
27. Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich- Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, P.; Llunell, M. Crystal 06 user's manual. Torino: University of Torino, 2006 
										
				
28. Spoel, D. v. d.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem., 2005, 26: 1701 
										
				
29. Saunders, V. R.; Freyria-Fava, C.; Dovesi, R.; Salasco, L.; Roetti, C. Mol. Phys., 1992, 77: 629 
										
				
30. Stewart, R. F.  d Ju sl Cent Kristalogr, 1982, 17: 1 
										
				
31. Campañá, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput., 2009, 5: 2866 
										
32. Shirono, K.; Daiguji, H. Chem. Phys. Lett., 2006, 417: 251
						
						
						
	                Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046
Kexin Feng , Jie Zhang , Yujia Sun , Qiong Ai , Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001
Yanyan Zhao , Zhen Wu , Yong Zhang , Bicheng Zhu , Jianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142
Jiangyuan Qiu , Tao Yu , Junxin Chen , Wenxuan Li , Xiaoxuan Zhang , jinsheng Li , Rui Guo , Zaiyin Huang , Xuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
Jinping Qiao , Yunchao Li , Caiyun Nan , Yuan Zhang , Shuo Wei , Yunling Zhao , Juan Han , Yufeng Li , Yanping Quan , Genban Sun , Huifeng Li , Shaoshi Guo , Yong He , Xuebin Deng , Jiaxin Zhang , Shufeng Si , Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016