Citation: CHEN Ye, CHEN Jian-Hua, GUO Jin. Effect of Natural Impurities on the Electronic Structures and Semiconducting Properties of Sphalerite[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001 shu

Effect of Natural Impurities on the Electronic Structures and Semiconducting Properties of Sphalerite

  • Received Date: 28 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(50864001)资助项目 (50864001)

  • A systematic study of the electronic structures of sphalerite containing fourteen kinds of natural impurities was performed by the density functional theory. The results show that Mn, Fe, Co, Ni, Cu, Cd, Hg, Ag, Pb, and Sb impurities narrow the bandgap of sphalerite and cause the absorption edge to increase. For all impurities except Cd and Hg, the Fermi level shifts to a higher energy level and impurity levels appear in the forbidden band. Fe, Ga, Ge, In, Sn, and Sb impurities change the sphalerite froma p-type toa n-type semiconductor while Mn, Co, Ni, Cu, Cd, Hg, Ag, and Pb impurities have no effect. Cu impurity changes the sphalerite from a direct bandgap to an indirect bandgap type semiconductor.

  • 加载中
    1. [1]

      1. Ge, M.;Wu, W.; Xu, B.; Jiang, B. Acta Sci. Nat. Univ. Nankai, 2008, 41: 33 [葛明,吴伟,徐斌, 蒋彬. 南开大学学报, 2008, 41: 33]

    2. [2]

      2. Guo, L.; Wang, D. J.; Li, D. S.; Huang, J.; Wang, J. W. J. Mater. Eng., 2008, 10: 287 [郭莉,王丹军, 李东升,黄静,王继武. 材料工程, 2008, 10: 287]

    3. [3]

      3. Dimitrova, V.; Tate, J. Thin Solid Films, 2000, 365(1): 134

    4. [4]

      4. Li, Y.; Lu, A. H.;Wang, C. Q. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25: 304 [李艳,鲁安怀,王长秋. 矿物岩石地球化学通报, 2006, 25: 304]

    5. [5]

      5. Wada, Y.; Yin, H.; Kitamura, T.; Yanagida, S. Chem. Commun., 1998: 2683

    6. [6]

      6. Chen, J. H.; Chen, Y.; Zeng, X. Q.; Li, Y. Q. The Chinese Journal of Nonferrous Metals, 2009, 19: 1517 [陈建华, 陈晔, 曾小钦, 李玉琼. 中国有色金属学报, 2009, 19: 1517]

    7. [7]

      7. Chen, J. H.; Chen, Y.; Li, Y. Q. Trans. Nonferrous Met. Soc. China, 2010, 20: 502

    8. [8]

      8. Yang, P.; Lü, M.; Xu, D.; Yuan, D.; Chang, J.; Zhou, G.; Pan, M. Appl. Phys. A-Mater. Sci. Process., 2002, 74: 257

    9. [9]

      9. Li, Y.; Lu, A. H.;Wang, C. Q. Acta Petrologica Et Mineralogica, 2007, 26: 481 [李艳,鲁安怀,王长秋. 岩石矿物学杂志, 2007, 26: 481]

    10. [10]

      10. Kudo, A.; Sekizawa, M. Catal. Lett., 1999, 58: 241

    11. [11]

      11. Kudo, A.; Sekizawa, M. Chem. Commun., 2000: 1371

    12. [12]

      12. Tong, X.; Zhou, Q. H.; He, J.; Rao, F. Met. Mine, 2006, 6: 8 [童雄,周庆华, 何剑,饶峰.金属矿山, 2006, 6: 8]

    13. [13]

      13. Si, R. J.; Gu, X. X.; Pang, X. C.; Fu, S. H. J. Mineral. Petrol., 2006, 26: 75 [司荣军,顾雪祥,庞绪成, 付绍洪. 矿物岩石, 2006, 26: 75]

    14. [14]

      14. Li, Y.; Lu, A. H.; Wang, C. Q.; Wu, X. L. Sol. Energy Mater. Sol. Cells, 2008, 92: 953

    15. [15]

      15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77: 3865

    16. [16]

      16. Vanderbilt, D. Phys. Rev. B, 1990, 41: 7892

    17. [17]

      17. Pack, J. D.; Monkhorst, H. J. Phys. Rev. B, 1977, 16: 1748

    18. [18]

      18. Hotje, U.; Rose, C.; Binnewies, M. Solid State Sci., 2003, 5: 1259

    19. [19]

      19. Cui, X. Y.; Medvedeva, J. E.; Delley, B.; Freeman, A. J.; Newman, N.; Stampfl, C. Phys. Rev. Lett., 2005, 95: 256404

    20. [20]

      20. Tong, X.; Song, S. X.; He, J. Miner. Eng., 2007, 20: 259

    21. [21]

      21. Tran, T. K.; Park, W.; Tong,W.; Kyi, M. M.;Wagner, B. K.; Summers, C. J. J. Appl. Phys., 1997, 81: 2803

    22. [22]

      22. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. J. Phys.- Condes. Matter, 1997, 9: 767

    23. [23]

      23. Ren, S. Y. Electronic states in crystals of finite size: quantum confinement of Bloch waves. Beijing: Peking University Press, 2006: 6 [任尚元.有限晶体中的电子态: Bloch 波的量子限域. 北京: 北京大学出版社, 2006: 6]

    24. [24]

      24. Chen, J. H.; ng, Z. Q. The ion doping of TiO2 semiconductor photocatalyst. Beijing: Science Press, 2006: 133 [陈建华, 龚竹 青.二氧化钛半导体光催化材料离子掺杂.北京: 科学出版社, 2006: 133]


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    17. [17]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    18. [18]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(1469)
  • Abstract views(3296)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return