Citation: QIAN Di-Feng, ZHANG Qing-Hong, * WAN Jun, LI Yao-Gang, WANG Hong-Zhi. Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2745-2751. doi: 10.3866/PKU.WHXB20100948 shu

Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode

  • Received Date: 7 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(50772127) (50772127)教育部科技创新工程重大项目培育资金项目(708039) (708039)中央高校基本科研业务费专项资金(10D10607)资助 (10D10607)

  • Transparent anatase titanium dioxide sol was prepared by the hydrothermal treatment of the home-made water soluble peroxotitanium acid (PTA). The nanorod-like TiO2 nanocrystals witha mean diameter of less than7 nm were obtained in the absence of organic compounds. In order to eliminate the large pores derived from eletrode sintering and improve the connectivity among particles in the porous TiO2 electrode, the as-prepared TiO2 sol was infiltrated to the porous TiO2 photoanode for dye sensitized solar cells (DSSCs). As a result, small nanocrystals of titanium dioxide attached to the surface of porous titanium dioxide as well as filled the large pores produced by photoanode sintering. The efficient electron transport networks were formed inside the porous titanium dioxide, which was confirmed by scanning electron microscope (SEM) and optical profilometry. The modified TiO2 film as the anodic electrode was used for the DSSCs and assembled into solar cells. Consequently, the overall energy conversion efficiency of the DSSCs was significantly enhanced by 64% after the low-concentration TiO2 sol infiltration.

  • 加载中
    1. [1]

      1. O'Regan, B.; Grätzel, M. Nature, 1991, 353: 737

    2. [2]

      2. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissõrtel, F. J.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature, 1998, 395: 583

    3. [3]

      3. Hagfeldt, A.; Grätzel, M. Acc. Chem. Res., 2000, 33: 269

    4. [4]

      4. Grätzel, M. Nature, 2001, 414: 338

    5. [5]

      5. Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun., 2003: 3036

    6. [6]

      6. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater., 2003, 15: 2101

    7. [7]

      7. Zhan, W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin., 2009, 25: 2087 [詹卫伸,潘石,李源作,陈茂笃. 物理化学学 报, 2009, 25: 2087]

    8. [8]

      8. Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B, 2003, 107: 8607

    9. [9]

      9. Park, N. G.; Schlichthorl, G.; van de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B, 1999, 103: 3308

    10. [10]

      10. Cass, M. J.; Qiu, F. L.; Walker, A. B.; Fisher A. C.; Peter, L. M. J. Phys. Chem. B, 2003, 107: 113

    11. [11]

      11. Kamat, P. V.; Haria, M.; Hotchandani, S. J. Phys. Chem. B, 2004, 108: 5166

    12. [12]

      12. Tan, S.; Zhai, J.; Xue, B.;Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Langmuir, 2004, 20: 2934

    13. [13]

      13. Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S. J. Phys. Chem. B, 2006, 110: 25222

    14. [14]

      14. Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem. B, 2001, 105: 1422

    15. [15]

      15. Yu, H.; Zhang, S. Q.; Zhao, H. J.; Xue, B. F.; Liu, P. R.; Will, G. J. Phys. Chem. C, 2009, 113: 16277

    16. [16]

      16. Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun., 2000: 2231

    17. [17]

      17. Yang, S. M.; Huang, Y. Y.; Huang, C. H.; Zhao, X. S. Chem. Mater., 2002, 14: 1500

    18. [18]

      18. Diamant, Y. S.; Chen, G.; Melamed, O.; Zaban, A. J. Phys. Chem. B, 2003, 107: 1977

    19. [19]

      19. Taguchi, T.; Zhang, X. T.; Sutanto, I.; Tokuhiro, K.; Rao, T. N.; Watanabe, H.; Nakamori, T.; Uragami, M.; Fujishima, A. Chem. Commun., 2003: 2480

    20. [20]

      20. Hore, S.; Kern, R. Appl. Phys. Lett., 2005, 87: 263504

    21. [21]

      21. Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B, 1997, 101: 2567

    22. [22]

      22. Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. Chem. Commun., 2007: 138

    23. [23]

      23. Xu, B.;Wu, J. H.; Zhang, X. K.; Li, S. Q. J. Funct. Mater., 2008, 39(10): 1703 [徐波, 吴季怀,张秀坤,李树全.功能材料, 2008, 39(10): 1703]

    24. [24]

      24. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; sakamoto, M.;Wang, F. J. Am. Chem. Soc., 2004, 126: 14943

    25. [25]

      25. Li, S.; Li, Y. G.; Wang, H. Z.; Fan, W. G.; Zhang, Q. H. Eur. J. Inorg. Chem., 2009, 27: 4078

    26. [26]

      26. Yang, S. M.; Kou, H. Z.; Wang, L.; Wang, H. J.; Fu, W. H. Acta Phys. -Chim. Sin., 2009, 25: 1219 [杨术明,寇慧芝,汪玲,王 红军,付文红.物理化学学报, 2009, 25: 1219]

    27. [27]

      27. O'Regan, B.; Durrant, J.; Sommeling, P.; Bakker, N. J. Phys. Chem. C, 2007, 111: 14001

    28. [28]

      28. Li, S.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. J. Inorg. Mater., 2009, 24: 675 [李爽, 张青红, 李耀刚,王宏志.无机材料学报, 2009, 24: 675]

    29. [29]

      29. Brinker, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc., 1997, 80: 3157

    30. [30]

      30. Zhang, J. Y.; Tian, H. M.; Tian, Z. P.; Wang, X. Y.; Yu, T.; Zou, Z. G. J. Inorg. Mater., 2009, 24: 1110 [张继远,田汉民,田志鹏, 王湘艳,于涛, 邹志刚.无机材料学报, 2009, 24: 1110]

    31. [31]

      31. Ichinose, H.; Terasaki, M.; Katsuki, H. J. Sol-Gel Sci. Technol., 2001, 22: 33

    32. [32]

      32. van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J. J. Phys. Chem. B, 2001, 105: 12433

    33. [33]

      33. Li, X. J.; Jin, Z. J.; Kang, R. K.; Guo, D. M.; Su, J. X. J. Semiconduct., 2005, 11: 2259 [李秀娟,金洙吉, 康仁科, 郭东明,苏建修. 半导体学报, 2005, 11: 2259]

    34. [34]

      34. Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Sol. Energy Mater. Sol. Cells, 2006, 90: 1176

    35. [35]

      35. Wang, F. M.; ng, F.; Li, C. L. J. Tianjin Univ., 2007, 40: 265 [王富民,巩峰,李成亮, 天津大学学报, 2007, 40: 265]

    36. [36]

      36. Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev., 2004, 248: 1165


  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(1640)
  • Abstract views(3846)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return