Citation: ZHU Yan-Feng, DU Rong-Gui, LI Jing, QI Hai-Qing, LIN Chang-Jian. Photogenerated Cathodic Protection Properties of a TiO2 Nanowire FilmPrepared by a Hydrothermal Method[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2349-2353. doi: 10.3866/PKU.WHXB20100913 shu

Photogenerated Cathodic Protection Properties of a TiO2 Nanowire FilmPrepared by a Hydrothermal Method

  • Received Date: 16 April 2010
    Available Online: 13 July 2010

    Fund Project: 国家高技术研究发展专项(2009AA03Z327) (2009AA03Z327)国家科技支撑计划项目(2007BAB27B04)资助 (2007BAB27B04)

  • A TiO2 film was synthesized on the surface of a Ti substrate by a hydrothermal method, followed by acid treatment and calcination. The properties of the TiO2 film were characterized by scanning electron microscopy, X-ray diffraction, and ultraviolet-visible spectrophotometry. The photogenerated cathodic protection properties of the TiO2 film were investigated by electrochemical techniques. The corrosion performance of 403 stainless steel coupled to a TiO2 film photoanode in different solutions was evaluated by photogenerated potential and electrochemical impedance spectroscopy. The results showed that the TiO2 film was composed of many randomly-oriented anatase nanowires of about 10 nm in diameter. The TiO2 nanowire film prepared by the hydrothermal reaction at 150 ℃ for 6 h was used for the photogenerated cathodic protection of 403 stainless steel. When we coupled the steel in a 0.5 mol·L-1 NaCl solution to the TiO2 film photoanode in a mixed solution containing 0.3 mol·-1 Na2SO4 and 0.5 mol·L-1 HCOOH, its potential decreased by 545 mV. Additionally, the charge transfer resistance of the electrode reaction process for the coupled steel decreased considerably. The results also indicated that the HCOOH in the mixed solution improved the photogenerated cathodic protection of the TiO2 filmphotoanode.

  • 加载中
    1. [1]

      1. Srimala, S.; Roshanorlyza, H.; Zainovia, L. Thin Solid Films, 2009, 518(1-2): 16

    2. [2]

      2. Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol., 2007, 41(13): 4735

    3. [3]

      3. Chatterjee, D. Catal. Commun., 2010, 11(5): 336

    4. [4]

      4. Shaban, Y. A.; Khan, S. U. M. Int. J. Hydrogen. Energ., 2008, 33 (4): 1118

    5. [5]

      5. Lee, C. Y.; Hupp, J. T. Langmuir, 2010, 26(5): 3760

    6. [6]

      6. Wang, H. F.; Su,W. N.; Hwang, B. J. Electrochem. Commun., 2009, 11(8): 1647

    7. [7]

      7. Park, J. A.; Moon, J.; Lee, S. J. Kim, S. H.; Zyung, T.; Chu, H. Y. Mater. Lett., 2010, 64(3): 255

    8. [8]

      8. Seo, M. H.; Yussa, M.; Kida, T.; Huh, J. S. Shimanoe, K.; Yamazoe, N. Sensor. Actuat. B-Chem., 2009, 137(2): 513

    9. [9]

      9. Brammer, K. S.; Oh, S.; Cobb, C. J.; Bjursten, L. M.; van der Heyde, H.; Jin, S. Acta Biomater., 2009, 5(8): 3215

    10. [10]

      10. Peng, L.; Eltgroth, M. L.; LaTempa, T. J. Grimes, C. A.; Desai, T. A. Biomaterials, 2009, 30(7): 1268

    11. [11]

      11. Wen, C.; Zhu, Y. J.; Kanbara, T.; Zhu, H. Z.; Xiao, C. F. Desalination, 2009, 249(2): 621

    12. [12]

      12. Uchida, S.; Chiba,R.; Tomiba, M. Electrochemistry, 2002, 70(6): 418

    13. [13]

      13. Li, H. L.; Luo,W. L.; Chen, T. Acta Phys. -Chim. Sin., 2008, 24 (8): 1383 [李海龙, 罗武林,陈涛.物理化学学报, 2008, 24 (8): 1383]

    14. [14]

      14. Tatsuma, T.; Saitoh, S. Ohko, Y.; Fujishima, A. Chem. Mater., 2001, 13(9): 2838

    15. [15]

      15. Shen, G. X.; Chen, Y. C.; Lin, C. J. Thin Solid Films, 2005, 489 (1-2): 130

    16. [16]

      16. Shen, G. X.; Chen, Y. C.; Lin, L.; Lin, C. J. Electrochim. Acta, 2005, 50(25-26): 5083

    17. [17]

      17. Park, H.; Kim, K. Y.; Choi, W. Chem. Commun., 2001, (3): 281

    18. [18]

      18. Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujishima, A. J. Electrochen. Soc., 2001, 148(1): B24

    19. [19]

      19. Zhou, M. J.; Zeng, Z. O.; Zhong, L. Corrosion Sci., 2009, 51(6): 1386

    20. [20]

      20. Li, J.; Yun, H.; Lin, C. J. J. Electrochem. Soc., 2007, 154(11): C631

    21. [21]

      21. Dong, X.; Tao, J.; Li, Y. Y.;Wang, T.; Zhu, H. Acta Phys. -Chim. Sin., 2009, 25(9): 1874 [董祥,陶杰, 李莹滢,汪涛,朱 宏. 物理化学学报, 2009, 25(9): 1874]

    22. [22]

      22. Fujita, K.; Konishi, J.; Nakanishi, K. Sci. Technol. Adv. Mater., 2006, 7(6): 511

    23. [23]

      23 Park, H.; Kim, K. Y.; Choi, W. J. Phys. Chem. B, 2002, 106(18): 4775

    24. [24]

      24 Leng, W. H.; Liu, D. P.; Cheng, X. F.; Zhu,W. C.; Zhang, J. Q.; Cao, C. N. Acta Metall. Sin., 2007, 43(7): 764 [冷文华, 刘东坡, 程小芳,朱文彩, 张鉴清,曹楚南.金属学报, 2007, 43(7): 764]


  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    11. [11]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    15. [15]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    16. [16]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(1286)
  • Abstract views(2988)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return