Citation:
LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai. Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2455-2460.
doi:
10.3866/PKU.WHXB20100909
-
Many microorganisms can adsorb metal ions strongly and even reduce them to their metal states. We studied the adsorption of ld nanoparticles on Escherichia coil (DH5α) to form Au@DH5α. Titanium tetrabutoxide was added to Au@DH5αto prepare Au@DH5α-Ti(OH)4 by hydrolysis. The DH5αtemplate was removed by calcination in air to obtain the Au@TiO2 catalyst. These materials were characterized by N2 adsorption, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), thermogravimetry-differential thermal analysis (TG-DTA), and transmission electron microscopy (TEM). The results show that the ld catalyst maintains a rod-like structure similar to DH5αand the porous structure of the titanium oxide prepared using DH5αas a biological template can prevent the aggregation of ld nanoparticles to some extent. With higher amounts of DH5αdosage, smaller ld nanoparticles were obtained and the surface plasmon absorption of ld nanoparticles shifted toward shorter wavelengths. The obtained ld catalyst has a larger surface area than the catalyst prepared by the impregnation method. However, this increases the coke content of the catalyst. Catalytic activity was evaluated by the CO oxidation reaction. We found that with a DH5αdosage of 100 or 150 mL, the obtained ld catalyst can convert CO to CO2 completely at 80 ℃.
-
Keywords:
-
Titaniumoxide
, - Escherichia coil,
- Template agent,
- ld catalyst,
- CO oxidation
-
-
-
-
[1]
1. Hutchings, G. J. J. Catal., 1985, 96(1): 292
-
[2]
2. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.,1987, 16: 405
-
[3]
3. Bond, G. C.; Thompson, D. T. ld Bull., 2000, 33(2): 41
-
[4]
4. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Top. Catal., 2007,44(1-2): 331
-
[5]
5. Corti, C. W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A,2005, 291(1-2): 253
-
[6]
6. Baron, R.; Willner, B.; Willner, I. Chem. Commun., 2007, (4): 323
-
[7]
7. Horovitz, O.; Tomoaia, G.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. ld Bull., 2007, 40(3): 213
-
[8]
8. Yang, F.; Guo, Z. J.; Bai, Y.; Huang, Z.; Zheng,W. J.Photographic Sci. Photochem., 2006, 24(2): 118 [杨芳,郭振江,白燕,黄峙,郑文杰.感光科学与光化学, 2006, 24(2):118]
-
[9]
9. Jin, M. S.; Yuan, H. Q.; Jing, J. R.; Suo, Z. H.; Sun, L. Chem. J.Chin. Univ., 2009, 30(6): 1183 [金明善,原慧卿,荆济荣, 索掌怀, 孙力.高等学校化学学报, 2009, 30(6): 1183]
-
[10]
10. Huang, H. Z.; Yuan, Q.; Yang, X. R. J. Colloid Interface Sci.,2005, 282(1): 26
-
[11]
11. Liu, K. Z.; Shi, L. L.; Jin, M. S.; Suo, Z. H. J. Mol. Catal. (China),2009, 23(5): 436 [刘克增, 石玲玲,金明善,索掌怀.分子催化,2009, 23(5): 436]
-
[12]
12. Gericke, M.; Pinches, A. ld Bull., 2006, 39(1): 22
-
[13]
13. Chen, X. C.; Hu, S. P.; Shen, C. F.; Dou, C. M.; Shi, J. Y.; Chen, Y.X. Bioresour. Technol., 2009, 100(1): 330
-
[14]
14. Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S.Mater. Lett., 2009, 63(15): 1231
-
[15]
15. Sugunan, A.; Melin, P.; Schnurer, J.; Hilborn, J. G.; Joydeep, D.Adv. Mater., 2007, 19(1): 77
-
[16]
16. Liu, Y. Y.; Fu, J. K.; Hu, R. Z.; Yao, B. X.; Weng, S. Z. ActaMicrobiol. Sin., 1999, 39(3): 260 [刘月英, 傅锦坤,胡荣宗,姚炳新,翁绳周.微生物学报, 1999, 39(3): 260]
-
[17]
17. Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.;Huang, C. C.; Li, W. M.; Sun, C. K.; Yeh, C. S. Chem. Commun.,2008, (37): 4430
-
[18]
18. Fu, J. K.; Liu, Y. Y.; Hu, R. Z.; Zegn, J. L.; Xu, P. P.; Lin, Z. Y.;Yao, B. X.;Weng, S. Z. Acta Phys. -Chim. Sin., 1998, 14(9): 769[傅锦坤,刘月英, 胡荣宗, 曾金龙,许翩翩,林种玉, 姚炳新,翁绳周. 物理化学学报, 1998, 14(9): 769]
-
[19]
19. Kumara, M. T.; Tripp, B. C.; Muralidharan, S. Chem. Mater.,2007, 19(8): 2056
-
[20]
20. Kumara, M. T.; Muralidharan, S.; Tripp, B. C. J. Nanosci.Nanotechnol., 2007, 7(7): 2260
-
[21]
21. Nomura, T.; Morimoto, Y.; Tokumoto, H.; Konishi, Y. Mater.Lett., 2008, 62(21-22): 3727
-
[22]
22. Nomura, T.; Morimoto, Y.; Ishikawa, M.; Tokumoto, H.; Konishi,Y. Adv. Powder Technol., 2010, 21(1): 8
-
[23]
23. Suo, Z. H.; Weng, Y. G.; Jin, M. S.; L俟, A. H.; Xu, J. G.; An, L. D.Chin. J. Catal., 2005, 26(11): 1022 [索掌怀,翁永根,金明善,吕爱花,徐金光, 安立敦.催化学报, 2005, 26(11): 1022]
-
[24]
24. Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C.J. Catal., 2004, 222(2): 357
-
[25]
25. Link, S.; El-Sayed, M. A. J. Phys. Chem. B, 1999, 103(21): 4212
-
[26]
26. Moreau, F.; Bond, G. C.; Taylor, A. O. J. Catal., 2005, 231(1):105
-
[27]
27. Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N. N.; Krafft, J. M.;Louis, C. J. Phys. Chem. B, 2006, 110(45): 22471
-
[28]
28. Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.;Datye, A. K. Microporous Mesoporous Mat., 2006, 95(1-3): 118
-
[1]
-
-
-
[1]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[4]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[5]
Jiayi Yang , Jianxiu Hao , Huacong Zhou , Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[8]
Wenwen Ma , Lian Kong , Jinyang Chu , Li Ma , Ziqing Ma , Heyu Cheng , Xinyuan Li , Zhan Yu , Zhen Zhao . Digitalization-Driven Olefin Production: Digital Design of Catalysts for CO2-Assisted Oxidation Dehydrogenation of Ethane to Ethylene. University Chemistry, 2026, 41(1): 363-372. doi: 10.12461/PKU.DXHX202506055
-
[9]
Yucai Zhang , Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006
-
[10]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[11]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[12]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[13]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[14]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[15]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[16]
Hailian Cheng , Shuaiqiang Jia , Chunjun Chen , Haihong Wu , Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023
-
[17]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[18]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[19]
Yuying JIANG , Jia LUO , Zhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124
-
[20]
Xiaolong Li , Shiqi Zhong , Xiangfeng Wei , Zhiqiang Liu , Pan Zhan , Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013
-
[1]
Metrics
- PDF Downloads(1161)
- Abstract views(3271)
- HTML views(47)
Login In
DownLoad: