Citation: CHEN Zhao-Yang, ZHAO Feng-Ming, MA Chun-An, QIAO Yun. Ultrasonic-Assisted Preparation of Bimodal Mesoporous HollowGlobal Tungsten Carbide and Its Electrocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2569-2574. doi: 10.3866/PKU.WHXB20100906 shu

Ultrasonic-Assisted Preparation of Bimodal Mesoporous HollowGlobal Tungsten Carbide and Its Electrocatalytic Performance

  • Received Date: 15 January 2010
    Available Online: 9 July 2010

    Fund Project: 浙江省重大科技专项国际合作项目(2008C14040) (2008C14040)浙江省自然科学基金重点项目(Z4100790) (Z4100790)国家自然科学基金(20476097)资助 (20476097)

  • Hollowspherical ammoniummetatungstate (AMT), as a precursor, was prepared by an ultrasonic method. Tungsten carbide (WC) was prepared by a gas-solid reaction in an atmosphere of CO/H2 at 700-900oC. Microspheres were fractured by ultrasonic dispersion for 1 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) surface area, and Barrett- Joyner-Halenda (BJH) pore-size distribution were used to characterize the morphology, mesoporous structure, and thermal stability of the sample. The results indicate that the sample is pure WC. The WC sample is stable in air at 410 oC and the mesopores of WC were centered at 4 nm and 22 nm. A WC powder microelectrode (WC-PME) was prepared using the prepared WC powders. The activity of WC for the electroreduction of nitrobenzene was studied by cyclic voltammetry (CV). The results indicate that the bimodal porosity of WC-PME led to higher catalytic activity than that of a Pt micro disc electrode (Pt-MDE). The reduction potential was 30 mV more positive than that of the Pt-MDE. The relation Ip-v1/2 showed that the electrode reaction was controlled by liquid diffusion.

  • 加载中
    1. [1]

      1. Levy, R. B.; Boudart, M. Science, 1973, 181: 547

    2. [2]

      2. B?hm, H. Nature, 1970, 227: 484

    3. [3]

      3. Ma, C. A.; Brandon, N.; Li, G. H. J. Phys. Chem. C, 2007, 111: 9504

    4. [4]

      4. Ma, C. A.; Huang, Y.; Tong, S. P.; Zhang, W. M. Acta Phys. - Chim. Sin., 2005, 21: 721 [马淳安,黄烨,童少平, 张维民. 物理化学学报, 2005, 21: 721]

    5. [5]

      5. Kojima, I.; Miyazaki, E.; Inoue, Y.; Yasumori, I. J. Catal., 1979, 59: 472

    6. [6]

      6. Horányi, G.; Rizmayer, E. M. React. Kinet. Catol. Lett., 1980, 12: 21

    7. [7]

      7. Hara, Y.; Minami, N.; Matsumoto, H.; Itagaki, H. Appl. Catal. A- Gen., 2007, 332: 289

    8. [8]

      8. Vidick, B.; Lemaiter, J.; Leclercq, L. J. Catal., 1986, 99: 439

    9. [9]

      9. York, A. P. E.; Claridge, J. B.;Williams, V. C.; Brungs, A. J.; Sloan, J.; Hanif, A.; Al-Megren, H.; Green, M. L. H. Stud. Surf. Sci. Catal. B, 2000, 103: 989

    10. [10]

      10. Oyama, S. T.; Delporte, P.; Ham-Huu, C. P.; Ledoux, M. J. Chem. Lett., 1997: 949

    11. [11]

      11. Choi, S.; Thompson, L. T. Mater. Res. Soc. Symp. Proc., 1997, 454: 41

    12. [12]

      12. Moreno-Castilla, C.; Alvarez-Merino, M. A.; Carrasxo-Martin, F.; Fierro, J. L. G. Langmuir, 2001, 17: 1752

    13. [13]

      13. Ribeiro, F. H.; Boucart, M.; Dalla, B.; Ralph, A.; Iglesia, E. J. Catal., 1991, 130: 498

    14. [14]

      14. Yu, F.W.; Liu, H. Z.; Ji, J. B. Chem. Engin. Times, 2003, 17: 45 [于风文,刘化章, 计建炳. 化工时刊, 2003, 17: 45]

    15. [15]

      15. Yao, Y. C.; Dai, Y. N.; Ren, H. L. Battery Bimonthly, 2004, 34: 250 [姚耀春,戴永年,任海伦. 电池, 2004, 34: 250]

    16. [16]

      16. Cachet-Vicier, C.; Vicier, V.; Cha, C. S. Electrochim. Acta, 2001, 47: 181

    17. [17]

      17. Sato, S.; Takahashi, R.; Sodesawa, T.; Koubata, M. Appl. Catal. A- Gen., 2005, 284: 247

    18. [18]

      18. Takahashi, R.; Sato, S.; Sodesawa, T.; Ikeda, T. Phys. Chem. Chem. Phys., 2003, 5: 2476

    19. [19]

      19. Caruso, R. A.; Antonietti, M. Adv. Funct. Mater., 2002, 12: 307


  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(1212)
  • Abstract views(2528)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return