Citation:
CHEN Zhao-Yang, ZHAO Feng-Ming, MA Chun-An, QIAO Yun. Ultrasonic-Assisted Preparation of Bimodal Mesoporous HollowGlobal Tungsten Carbide and Its Electrocatalytic Performance[J]. Acta Physico-Chimica Sinica,
;2010, 26(09): 2569-2574.
doi:
10.3866/PKU.WHXB20100906
-
Hollowspherical ammoniummetatungstate (AMT), as a precursor, was prepared by an ultrasonic method. Tungsten carbide (WC) was prepared by a gas-solid reaction in an atmosphere of CO/H2 at 700-900oC. Microspheres were fractured by ultrasonic dispersion for 1 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) surface area, and Barrett- Joyner-Halenda (BJH) pore-size distribution were used to characterize the morphology, mesoporous structure, and thermal stability of the sample. The results indicate that the sample is pure WC. The WC sample is stable in air at 410 oC and the mesopores of WC were centered at 4 nm and 22 nm. A WC powder microelectrode (WC-PME) was prepared using the prepared WC powders. The activity of WC for the electroreduction of nitrobenzene was studied by cyclic voltammetry (CV). The results indicate that the bimodal porosity of WC-PME led to higher catalytic activity than that of a Pt micro disc electrode (Pt-MDE). The reduction potential was 30 mV more positive than that of the Pt-MDE. The relation Ip-v1/2 showed that the electrode reaction was controlled by liquid diffusion.
-
Keywords:
-
Tungsten carbide
, - Ultrasonic-assistance,
- Mesoporous,
- Electrocatalysis
-
-
-
-
[1]
1. Levy, R. B.; Boudart, M. Science, 1973, 181: 547
-
[2]
2. B?hm, H. Nature, 1970, 227: 484
-
[3]
3. Ma, C. A.; Brandon, N.; Li, G. H. J. Phys. Chem. C, 2007, 111: 9504
-
[4]
4. Ma, C. A.; Huang, Y.; Tong, S. P.; Zhang, W. M. Acta Phys. - Chim. Sin., 2005, 21: 721 [马淳安,黄烨,童少平, 张维民. 物理化学学报, 2005, 21: 721]
-
[5]
5. Kojima, I.; Miyazaki, E.; Inoue, Y.; Yasumori, I. J. Catal., 1979, 59: 472
-
[6]
6. Horányi, G.; Rizmayer, E. M. React. Kinet. Catol. Lett., 1980, 12: 21
-
[7]
7. Hara, Y.; Minami, N.; Matsumoto, H.; Itagaki, H. Appl. Catal. A- Gen., 2007, 332: 289
-
[8]
8. Vidick, B.; Lemaiter, J.; Leclercq, L. J. Catal., 1986, 99: 439
-
[9]
9. York, A. P. E.; Claridge, J. B.;Williams, V. C.; Brungs, A. J.; Sloan, J.; Hanif, A.; Al-Megren, H.; Green, M. L. H. Stud. Surf. Sci. Catal. B, 2000, 103: 989
-
[10]
10. Oyama, S. T.; Delporte, P.; Ham-Huu, C. P.; Ledoux, M. J. Chem. Lett., 1997: 949
-
[11]
11. Choi, S.; Thompson, L. T. Mater. Res. Soc. Symp. Proc., 1997, 454: 41
-
[12]
12. Moreno-Castilla, C.; Alvarez-Merino, M. A.; Carrasxo-Martin, F.; Fierro, J. L. G. Langmuir, 2001, 17: 1752
-
[13]
13. Ribeiro, F. H.; Boucart, M.; Dalla, B.; Ralph, A.; Iglesia, E. J. Catal., 1991, 130: 498
-
[14]
14. Yu, F.W.; Liu, H. Z.; Ji, J. B. Chem. Engin. Times, 2003, 17: 45 [于风文,刘化章, 计建炳. 化工时刊, 2003, 17: 45]
-
[15]
15. Yao, Y. C.; Dai, Y. N.; Ren, H. L. Battery Bimonthly, 2004, 34: 250 [姚耀春,戴永年,任海伦. 电池, 2004, 34: 250]
-
[16]
16. Cachet-Vicier, C.; Vicier, V.; Cha, C. S. Electrochim. Acta, 2001, 47: 181
-
[17]
17. Sato, S.; Takahashi, R.; Sodesawa, T.; Koubata, M. Appl. Catal. A- Gen., 2005, 284: 247
-
[18]
18. Takahashi, R.; Sato, S.; Sodesawa, T.; Ikeda, T. Phys. Chem. Chem. Phys., 2003, 5: 2476
-
[19]
19. Caruso, R. A.; Antonietti, M. Adv. Funct. Mater., 2002, 12: 307
-
[1]
-
-
-
[1]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[2]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[3]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[4]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[7]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[8]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[9]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[10]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[11]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[12]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[13]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[14]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[15]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[16]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[17]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[18]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[19]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[20]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.
-
[1]
Metrics
- PDF Downloads(1212)
- Abstract views(2528)
- HTML views(6)