Citation: ZHOU Yan-Li, ZHI Jin-Fang, ZHANG Xiang-Fei, XU Mao-Tian. Comparative Study of Electrochemical Performances of Three Carbon-Based ElectrodeMaterials[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2405-2409. doi: 10.3866/PKU.WHXB20100841 shu

Comparative Study of Electrochemical Performances of Three Carbon-Based ElectrodeMaterials

  • Received Date: 18 April 2010
    Available Online: 2 July 2010

    Fund Project: 国家自然科学基金(20775047) (20775047)河南省科技厅国际合作项目基金(084300510075) (084300510075)商丘师范学院青年基金(009QN08)资助 (009QN08)

  • The electrochemical properties of three carbon-based electrodes including boron-doped nanocrystalline diamond (BDND), boron-doped microcrystalline diamond (BDMD), and glassy carbon (GC) were compared. We used scanning electron microscopy to characterize the two diamond electrodes and the grain sizes of the BDMD and BDND films were 1-5 μm and 20-100 nm, respectively. The phase composition was characterized by Raman spectroscopy and high-quality BDMD and BDND films were formed by hot-filament chemical vapor deposition. Cyclic votammograms for 0.5 mol·L-1 H2SO4 showed that the potential windows for the BDND and BDMD electrodes were 3.3 and 3.0 V, respectively. The potential windows were much wider than that of the GC electrode (2.5 V). The cyclic voltammograms and Nyquist plots of the impedance measurements for [Fe(CN)6]3-/[Fe(CN)6]4- show peak to peak separations (ΔEp) of 73, 92, and 112 mV and electron transfer resistances (Ret) of (98依5), (260依19), and (400依25) Ωfor the BDND, BDMD, and GC electrodes, respectively. We also investigated the oxidation of 0.1 mmol·L-1 bisphenol A (BPA) on the three carbon-based electrodes. The above-mentioned electrochemical results reveal that the two diamond electrodes have wider potential windows, better reversibility, faster electron transfer, and higher stability than the GC electrode. Additionally, the BDND electrode shows better electrochemical properties than the BDMD electrode.

  • 加载中
    1. [1]

      1. McCreery, R. L. Chem. Rev., 2008, 108: 2646

    2. [2]

      2. Wang, Y. R.; Hu, P.; Liang, Q. L.; Luo, G. A.; Wang, Y. M. Chin. J. Anal. Chem., 2008, 36: 1011 [王月荣,胡坪, 梁琼麟, 罗国安,王义明. 分析化学, 2008, 36: 1011]

    3. [3]

      3. Chen, P. H.; Fryling, M. A.; McCreery, R. L. Anal. Chem., 1995, 67: 3115

    4. [4]

      4. Wang, J.; Musameh, M.; Mo, J. W. Anal. Chem., 2006, 78: 7044

    5. [5]

      5. Hermans, A.; Seipel, A. T.; Miller, C. E.; Wightman, R. M. Langmuir, 2006, 22: 1964

    6. [6]

      6. L俟, Y. F.; Yin, Y. J.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin., 2007, 23: 5 [吕亚芬, 印亚静,吴萍,蔡称心.物理化学学报, 2007, 23: 5]

    7. [7]

      7. Zhang, B.; Adams, K. L.; Luber, S. J.; Eves, D. J.; Heien, M.; Ewing, A. G. Anal. Chem., 2008, 80: 1394

    8. [8]

      8. Zhi, J. F.; Tian, R. H. Prog. Chem., 2005, 17: 55 [只金芳, 田如海.化学进展, 2005, 17: 55]

    9. [9]

      9. Granger, M. C.; Witek, M.; Xu, J.;Wang, J.; Hupert, M.; Hanks, A.; Koppang, M. D.; Butler, J. E.; Lucazeau, G.; Mermoux, M.; Strojek, J. W.; Swain, G. M. Anal. Chem., 2000, 72: 3793

    10. [10]

      10. Tatsuma, T.; Mori, H.; Fujishima, A. Anal. Chem., 2000, 72: 2919

    11. [11]

      11. Compton, R. G.; Foord, J. S.; Marken, F. Electroanalysis, 2003, 15: 1349

    12. [12]

      12. Swain, G. M.; Ramesham, R. Anal. Chem., 1993, 65: 345

    13. [13]

      13. Zhou, Y. L.; Zhi, J. F.; Zou, Y. S.; Zhang,W. J.; Lee, S. T. Anal. Chem., 2008, 80: 4141

    14. [14]

      14. Wilson, N. R.; Clewes, S. L.; Newton, M. E.; Unwin, P. R.; MacPherson, J. V. J. Phys. Chem. B, 2006, 110: 5639

    15. [15]

      15. Barnard, A. S.; Sternberg, M. J. Phys. Chem. B, 2006, 110: 19307

    16. [16]

      16. Zhang, Y.; Yoshihara, S.; Shirakashi, T.; Kyomen, T. Diamond Relat. Mater., 2005, 14: 213

    17. [17]

      17. Fischer, A. E.; Show, Y.; Swain, G. M. Anal. Chem., 2004, 76: 2553

    18. [18]

      18. Duo, I.; Fujishima, A.; Comninellis, C. Electrochem. Commun., 2003, 5: 695

    19. [19]

      19. Bennett, J. A.;Wang, J.; Show, Y.; Swain, G. M. J. Electrochem. Soc., 2004, 151: E306

    20. [20]

      20. Show, Y.; Witek, M. A.; Sonthalia, P.; Swain, G. M. Chem. Mater., 2003, 15: 879

    21. [21]

      21. Prawer, S.; Nugent, K. W.; Jamieson, D. N.; Orwa, J. O.; Bursill, L. A.; Peng, J. L. Chem. Phys. Lett., 2000, 332: 93

    22. [22]

      22. Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.;Witek, M.; Swain, G. M. J. Electrochem. Soc., 2001, 148: E44

    23. [23]

      23. Niwa, O.; Jia, J.; Sato, Y.; Kato, D.; Kurita, R.; Maruyama, K.; Suzuki, K.; Hirono, S. J. Am. Chem. Soc., 2006, 128: 7144

    24. [24]

      24. Jia, J.; Kato, D.; Kurita, R.; Sato, Y.; Maruyama, K.; Suzuki, K.; Hirono, S.; Ando, T.; Niwa, O. Anal. Chem., 2007, 79: 98

    25. [25]

      25. Yin, H.; Zhou, Y.; Ai, S. J. Electroanal. Chem., 2009, 626: 80

    26. [26]

      26. D'Antuono, A.; Dall'Orto, V. C.; Lo Balbo, A.; Sobral, S.; Rezzano, I. J. Agric. Food Chem., 2001, 49: 1098


  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(1384)
  • Abstract views(3190)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return