Citation: ZHOU Yan-Li, ZHI Jin-Fang, ZHANG Xiang-Fei, XU Mao-Tian. Comparative Study of Electrochemical Performances of Three Carbon-Based ElectrodeMaterials[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2405-2409. doi: 10.3866/PKU.WHXB20100841
-
The electrochemical properties of three carbon-based electrodes including boron-doped nanocrystalline diamond (BDND), boron-doped microcrystalline diamond (BDMD), and glassy carbon (GC) were compared. We used scanning electron microscopy to characterize the two diamond electrodes and the grain sizes of the BDMD and BDND films were 1-5 μm and 20-100 nm, respectively. The phase composition was characterized by Raman spectroscopy and high-quality BDMD and BDND films were formed by hot-filament chemical vapor deposition. Cyclic votammograms for 0.5 mol·L-1 H2SO4 showed that the potential windows for the BDND and BDMD electrodes were 3.3 and 3.0 V, respectively. The potential windows were much wider than that of the GC electrode (2.5 V). The cyclic voltammograms and Nyquist plots of the impedance measurements for [Fe(CN)6]3-/[Fe(CN)6]4- show peak to peak separations (ΔEp) of 73, 92, and 112 mV and electron transfer resistances (Ret) of (98依5), (260依19), and (400依25) Ωfor the BDND, BDMD, and GC electrodes, respectively. We also investigated the oxidation of 0.1 mmol·L-1 bisphenol A (BPA) on the three carbon-based electrodes. The above-mentioned electrochemical results reveal that the two diamond electrodes have wider potential windows, better reversibility, faster electron transfer, and higher stability than the GC electrode. Additionally, the BDND electrode shows better electrochemical properties than the BDMD electrode.
-
-
[1]
1. McCreery, R. L. Chem. Rev., 2008, 108: 2646
-
[2]
2. Wang, Y. R.; Hu, P.; Liang, Q. L.; Luo, G. A.; Wang, Y. M. Chin. J. Anal. Chem., 2008, 36: 1011 [王月荣,胡坪, 梁琼麟, 罗国安,王义明. 分析化学, 2008, 36: 1011]
-
[3]
3. Chen, P. H.; Fryling, M. A.; McCreery, R. L. Anal. Chem., 1995, 67: 3115
-
[4]
4. Wang, J.; Musameh, M.; Mo, J. W. Anal. Chem., 2006, 78: 7044
-
[5]
5. Hermans, A.; Seipel, A. T.; Miller, C. E.; Wightman, R. M. Langmuir, 2006, 22: 1964
-
[6]
6. L俟, Y. F.; Yin, Y. J.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin., 2007, 23: 5 [吕亚芬, 印亚静,吴萍,蔡称心.物理化学学报, 2007, 23: 5]
-
[7]
7. Zhang, B.; Adams, K. L.; Luber, S. J.; Eves, D. J.; Heien, M.; Ewing, A. G. Anal. Chem., 2008, 80: 1394
-
[8]
8. Zhi, J. F.; Tian, R. H. Prog. Chem., 2005, 17: 55 [只金芳, 田如海.化学进展, 2005, 17: 55]
-
[9]
9. Granger, M. C.; Witek, M.; Xu, J.;Wang, J.; Hupert, M.; Hanks, A.; Koppang, M. D.; Butler, J. E.; Lucazeau, G.; Mermoux, M.; Strojek, J. W.; Swain, G. M. Anal. Chem., 2000, 72: 3793
-
[10]
10. Tatsuma, T.; Mori, H.; Fujishima, A. Anal. Chem., 2000, 72: 2919
-
[11]
11. Compton, R. G.; Foord, J. S.; Marken, F. Electroanalysis, 2003, 15: 1349
-
[12]
12. Swain, G. M.; Ramesham, R. Anal. Chem., 1993, 65: 345
-
[13]
13. Zhou, Y. L.; Zhi, J. F.; Zou, Y. S.; Zhang,W. J.; Lee, S. T. Anal. Chem., 2008, 80: 4141
-
[14]
14. Wilson, N. R.; Clewes, S. L.; Newton, M. E.; Unwin, P. R.; MacPherson, J. V. J. Phys. Chem. B, 2006, 110: 5639
-
[15]
15. Barnard, A. S.; Sternberg, M. J. Phys. Chem. B, 2006, 110: 19307
-
[16]
16. Zhang, Y.; Yoshihara, S.; Shirakashi, T.; Kyomen, T. Diamond Relat. Mater., 2005, 14: 213
-
[17]
17. Fischer, A. E.; Show, Y.; Swain, G. M. Anal. Chem., 2004, 76: 2553
-
[18]
18. Duo, I.; Fujishima, A.; Comninellis, C. Electrochem. Commun., 2003, 5: 695
-
[19]
19. Bennett, J. A.;Wang, J.; Show, Y.; Swain, G. M. J. Electrochem. Soc., 2004, 151: E306
-
[20]
20. Show, Y.; Witek, M. A.; Sonthalia, P.; Swain, G. M. Chem. Mater., 2003, 15: 879
-
[21]
21. Prawer, S.; Nugent, K. W.; Jamieson, D. N.; Orwa, J. O.; Bursill, L. A.; Peng, J. L. Chem. Phys. Lett., 2000, 332: 93
-
[22]
22. Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.;Witek, M.; Swain, G. M. J. Electrochem. Soc., 2001, 148: E44
-
[23]
23. Niwa, O.; Jia, J.; Sato, Y.; Kato, D.; Kurita, R.; Maruyama, K.; Suzuki, K.; Hirono, S. J. Am. Chem. Soc., 2006, 128: 7144
-
[24]
24. Jia, J.; Kato, D.; Kurita, R.; Sato, Y.; Maruyama, K.; Suzuki, K.; Hirono, S.; Ando, T.; Niwa, O. Anal. Chem., 2007, 79: 98
-
[25]
25. Yin, H.; Zhou, Y.; Ai, S. J. Electroanal. Chem., 2009, 626: 80
-
[26]
26. D'Antuono, A.; Dall'Orto, V. C.; Lo Balbo, A.; Sobral, S.; Rezzano, I. J. Agric. Food Chem., 2001, 49: 1098
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[3]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[6]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[9]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[10]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[11]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[12]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[13]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[14]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[15]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[16]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[17]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[18]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[20]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[1]
Metrics
- PDF Downloads(1384)
- Abstract views(3138)
- HTML views(5)