Citation: LI Wen-Zuo, ZHU Hong-Jie, CHENG Jian-Bo, LI Qing-Zhong, NG Bao-An. Structures of the Triplet Silylenoid HB=SiLiF and Its Insertion Reactions with R—H(R=F, OH, NH2)[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2543-2548. doi: 10.3866/PKU.WHXB20100830 shu

Structures of the Triplet Silylenoid HB=SiLiF and Its Insertion Reactions with R—H(R=F, OH, NH2)

  • Received Date: 17 March 2010
    Available Online: 29 June 2010

    Fund Project: 山东省自然科学基金(ZR2009BQ006) (ZR2009BQ006)超分子结构与材料国家重点实验室(吉林大学)开放基金(SKLSSM200909) (吉林大学)开放基金(SKLSSM200909)烟台大学博士科研基金(HY05B30, HY05B36)资助项目 (HY05B30, HY05B36)

  • Density functional theory (DFT) and quadratic configuration interaction with single and double excitations (QCISD) methods were used to investigate the geometries of the triplet silylenoid HB=SiLiF as well as its insertion reactions with RH (R=F, OH, NH2). The calculated results indicated that HB=SiLiF has three equilibrium structures wherein the four-membered ring structure had the lowest energy and it was the most stable structure. The mechanisms of the insertion reactions for HB=SiLiF with HF, H2O, and NH3 were identical. The QCISD/6-311++G(d,p)//B3LYP/ 6-311+G(d,p) calculated potential energy barriers of the three reactions were 124.85, 140.67, and 148.16 kJ·mol-1, and the reaction heats for the three reactions were -2.22, 20.08, and 23.22 kJ·mol -1, respectively. Under the same conditions, the insertion reactions should occur easily according to the following order: H—F>H—OH>H—NH2.

  • 加载中
    1. [1]

      1. Tamao, K.; Kawachi, A. Angew. Chem. Int. Edit., 1995, 34: 818

    2. [2]

      2. Lee, M. E.; Cho, H. M.; Lim, Y. M.; Choi, J. K.; Park, C. H.; Jeong, S. E.; Lee, U. Chem. Eur. J., 2004, 10: 377

    3. [3]

      3. Molev, G.; Bravo-Zhivotovakii, D.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc., 2006, 128: 2784

    4. [4]

      4. Boudjouk, P.; Samaraweera, U. Angew. Chem. Int. Edit., 1988, 27: 1355

    5. [5]

      5. Tamao, K.; Kawachi, A. Organometallics, 1995, 14: 3108

    6. [6]

      6. Tamao, K.; Kawachi, A. Pure Appl. Chem., 1999, 71: 393

    7. [7]

      7. Sekiguchi, A.; Lee, V. Y.; Nanjo, M. Coord. Chem. Rev., 2000, 210: 11

    8. [8]

      8. Wiberg, N.; Niedermayer, W. J. Organomet. Chem., 2001, 628: 57

    9. [9]

      9. Likhar, P. R.; Zirngast, M.; Baumgartner, J.; Marschner, C. Chem. Commun., 2004: 1764

    10. [10]

      10. Kawachi, A.; Oishi, Y.; Kataoka, T.; Tamao, K. Organometallics, 2004, 23: 2949

    11. [11]

      11. Lim, Y. M.; Cho, H. M.; Lee, M. E.; Baeck, K. K. Organometallics, 2006, 25: 4960

    12. [12]

      12. Harloff, J.; Popowski, E.; Reinke, H. J. Organomet. Chem., 2007, 692: 1421

    13. [13]

      13. Clark, T.; Schleyer, P. R. J. Organomet. Chem., 1980, 191: 347

    14. [14]

      14. Feng, S.; Feng, D.; Deng, C. Chem. Phys. Lett., 1993, 214: 97

    15. [15]

      15. Tanaka, Y.; Kawachi, A.; Hada, M.; Nakatsuji, H.; Tamao, K. Organometallics, 1998, 17: 4573

    16. [16]

      16. Feng, S.; Feng, D.; Li, J. Chem. Phys. Lett., 2000, 316: 146

    17. [17]

      17. Feng, S.; Feng, D. J. Mol. Struct. -Theochem, 2001, 514: 171

    18. [18]

      18. Feng, S.; Feng, D.; Li, M.; Bu, Y. Chem. Phys. Lett., 2001, 339: 103

    19. [19]

      19. Feng, S.; Feng, D.; Li, M.; Zhou, Y. Int. J. Quantum Chem., 2002,87: 360

    20. [20]

      20. Feng, S.; Zhou, Y.; Feng, D. J. Phys. Chem. A, 2003, 107: 4116

    21. [21]

      21. Feng, D.; Xie, J.; Feng, S. Chem. Phys. Lett., 2004, 396: 245

    22. [22]

      22. Feng, S.; Lai, G.; Zhou, Y.; Feng, D. Chem. Phys. Lett., 2005, 415: 327

    23. [23]

      23. Flock, M.; Marschner, C. Chem. Eur. J., 2005, 11: 4635

    24. [24]

      24. Xie, J.; Feng, D.; Feng, S.; Zhang, J. J. Mol. Struct. -Theochem, 2005, 755: 55

    25. [25]

      25. Xie, J.; Feng, D.; He, M.; Feng, S. J. Phys. Chem. A, 2005, 109: 10563

    26. [26]

      26. Xie, J.; Feng, D.; Feng, S. J. Organomet. Chem., 2006, 691: 208

    27. [27]

      27. Xie, J.; Feng, D.; Feng, S. Struct. Chem., 2006, 17: 63

    28. [28]

      28. Xie, J.; Feng, D.; Feng, S. J. Comput. Chem., 2006, 27: 933

    29. [29]

      29. Xie, J.; Feng, D.; Feng, S.; Zhang, J. Chem. Phys., 2006, 323: 185

    30. [30]

      30. Li, W. Z.; ng, B. A.; Cheng, J. B. Acta Phys. -Chim. Sin., 2006, 22: 653 [李文佐,宫宝安, 程建波.物理化学学报, 2006, 22: 653]

    31. [31]

      31. Li, W. Z.; ng, B. A.; Cheng, J. B.; Xiao, C. P. Acta Chim. Sin., 2007, 65: 1573 [李文佐,宫宝安,程建波,肖翠平. 化学学报, 2007, 65: 1573]

    32. [32]

      32. Xie, J.; Feng, D.; Feng, S.; Ding, Y. Struct. Chem., 2007, 18: 65

    33. [33]

      33. Xie, J.; Feng, D.; Feng, S. J. Phys. Chem. A, 2007, 111: 8475

    34. [34]

      34. Qi, Y.; Feng, D.; Feng, S. J. Mol. Struct. -Theochem, 2008, 856: 96

    35. [35]

      35. Li, W. Z.; Cheng, J. B.; ng, B. A.; Yu, J. K.; Sun, J. Z. Acta Phys. -Chim. Sin., 2008, 24: 901 [李文佐, 程建波,宫宝安, 于健康,孙家钟. 物理化学学报, 2008, 24: 901]

    36. [36]

      36. Qi, Y.; Feng, D.; Li, R.; Feng, S. J. Organomet. Chem., 2009, 694: 771

    37. [37]

      37. Li, W. Z.; Cheng, J. B.; ng, B. A.; Yu, J. K.; Sun, J. Z. Acta Chim. Sin., 2009, 67: 756 [李文佐,程建波,宫宝安, 于健康, 孙家钟.化学学报, 2009, 67: 756]

    38. [38]

      38. Holthausen, M. C.; Koch, W.; Apeloig, Y. J. Am. Chem. Soc., 1999, 121: 2623

    39. [39]

      39. Jiang, P.; Gaspar, P. P. J. Am. Chem. Soc., 2001, 123: 8622

    40. [40]

      40. Hill, N. J.; West, R. J. Organomet. Chem., 2004, 689: 4165

    41. [41]

      41. Cramer, C. J.; Falvey, D. E. Tetrahedron Lett., 1994, 35: 4943

    42. [42]

      42. Tachikawa, H.; Yamada, Y.; Lyama, T. Can. J. Chem., 1999, 77: 1419

    43. [43]

      43. Gaspar, P. P.; Xiao, M.; Pae, D. H.; Berge, D. J.; Haile, T.; Chen, T.; Lei, D.; Winchester, W. R.; Jiang, P. J. Organomet. Chem., 2002, 646: 68

    44. [44]

      44. Yoshida, M.; Tamaoki, N. Organometallics, 2002, 21: 2587

    45. [45]

      45. Sekiguchi, A.; Tanaka, T.; Ichinohe, M.; Akiyama, K.; Tero-Kubota S. J. Am. Chem. Soc., 2003, 123: 4962

    46. [46]

      46. Xu, Y.; Zhang, Y.; Li, J. J. Phys. Chem. C, 2007, 111: 3729

    47. [47]

      47. Skryshevski, Y.; Piryatinski, Y.; Vakhnin, A.; Blonsky, I.; Kadashchuk, A.; Ne?pu觷rek, S. Optical Materials, 2007, 30: 384

    48. [48]

      48. Becke, A. D. J. Chem. Phys., 1993, 98: 5648

    49. [49]

      49. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    50. [50]

      50. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio molecular orbital theory. NewYork: Wiley, 1986

    51. [51]

      51. nzalez, C.; Schlegel, H. B. J. Phys. Chem., 1991, 95: 5853

    52. [52]

      52. Gauss, J.; Cremer, C. Chem. Phys. Lett., 1988, 150: 280

    53. [53]

      53. Salter, E. A.; Trucks, G.W.; Bartlett, R. J. J. Chem. Phys., 1989, 90: 1752

    54. [54]

      54. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003

    55. [55]

      55. Apeloig, Y.; Pauncz, R.; Karni, M.;West, R.; Steiner, W.; Chapman, D. Organometallics, 2003, 22: 3250


  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    6. [6]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    7. [7]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(895)
  • Abstract views(2694)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return