Citation: NING Hua, TAO Xiang-Ming, WANG Mang-Mang, CAI Jian-Qiu, TAN Ming-Qiu. Density Functional Theory Study on Hydrogen Adsorption on Be(0001) Surface[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2267-2273. doi: 10.3866/PKU.WHXB20100828 shu

Density Functional Theory Study on Hydrogen Adsorption on Be(0001) Surface

  • Received Date: 14 January 2010
    Available Online: 28 June 2010

    Fund Project: 浙江省教育厅科研项目(Y200804278) (Y200804278)长江学者和创新团队发展计划(IRT0754)资助 (IRT0754)

  • We report on density functional theory (DFT) total-energy calculations within the generalized gradient approximation for the adsorption of hydrogen onto Be(0001) surface. To investigate the atomic geometries and stability with different hydrogen coverages for this system, we changed the atomic hydrogen coverage from 0.06 to 1.33 monolayer (ML) using various surface supercell geometries. The calculations showed that the adsorption sites have a strong dependence on hydrogen coverage. The adsorbates mainly occupied fcc and hcp hollow sites below 0.67 ML. At 0.78 ML the hydrogen atoms were adsorbed on hollow and bridge sites while for the higher coverage range (ca 0.89-1.00 ML) the hydrogen atoms were adsorbed onto the tilted bridge sites, i.e., a bridge site with a small deviation towards the hollow position. From 1.11 to 1.33 ML, the adsorbed hydrogen atoms were located at hcp and bridge sites, and some Be surface atoms were expanded. All these adsorption configurations were found to be energetically favorable with a H2 reference point fixed on H2 molecule. Further total-energy calculations based on a p(3×3) geometry did not revealed any stable or energetically favorable adsorption geometry versus the H2 molecule beyond a hydrogen coverage of 1.33 ML.

  • 加载中
    1. [1]

      [1]. Biswas, R.; Hamann, D. R. Phys. Rev. Lett., 1986, 56: 2291

    2. [2]

      [2]. Mattsson, T. R.; Wahnstrom, G.; Bengtsson, L.; Hammer, B. Phys. Rev. B, 1997, 56: 2258

    3. [3]

      [3]. Bhatia, B.; Sholl, D. S. J. Chem. Phys., 2005, 122: 204707

    4. [4]

      [4]. Ledentu, V.; Dong, W.; Sautet, P.; Kresse, G.; Hafner, J. Phys. Rev. B, 1998, 57: 12482

    5. [5]

      [5]. Dong, W.; Kresse, G.; Furthmüller, J.; Hafner, J. Phys. Rev. B, 1996, 54: 2157

    6. [6]

      [6]. Chou, M. Y.; Chelikowsky, J. R. Phys. Rev. B, 1987, 59: 1737

    7. [7]

      [7]. Abramov, E.; Riehm, M. P.; Thompson, D. A.; Smelter, W. W. J. Nucl. Mater., 1990, 175: 9

    8. [8]

      [8]. Vajeeson, P.; Ravindran, P.; Kjekshus, A.; Fjellvag, H. Appl. Phys. Lett., 2004, 84: 34

    9. [9]

      [9]. Marino, M. M.; Ermler, W. C.; Tompa, G. S.; Seidl, M. Surf. Sci., 1989, 208: 189

    10. [10]

      [10]. Ray, K. B.; Hannon, J. B.; Plummer, E. W. Chem. Phys. Lett., 1990, 171: 469

    11. [11]

      [11]. Doerner, R. P. J. Nucl. Mater., 2007, 363: 32

    12. [12]

      [12]. Reinelt, M.; Linsmeier, C. Phys. Scr., 2007, 128: 111

    13. [13]

      [13]. Yu, R.; Lam, P. K. Phys. Rev. B, 1989, 39: 5035

    14. [14]

      [14]. Hedin, L.; Lundqvist, B. I. J. Phys. C, 1971, 4: 2064

    15. [15]

      [15]. Marino, M. M.; Ermler, W. C. J. Chem. Phys., 1991, 94: 8021

    16. [16]

      [16]. Stumpf, R.; Feibelman, P. J. Phys. Rev. B, 1995, 51: 13748

    17. [17]

      [17]. Feibelman, P. J. Phys. Rev. B, 1993, 48: 11270

    18. [18]

      [18]. Stumpf, R. Phys. Rev. B, 1996, 53: 4253

    19. [19]

      [19]. Allouche, A. Phys. Rev. B, 2008, 78: 085429

    20. [20]

      [20]. Kresse, G.; Furthermüller, J. Comput. Mater. Sci., 1996, 6:15

    21. [21]

      [21]. Kresse, G.; Furthermüller, J. Phys. Rev. B, 1996, 55: 11169

    22. [22]

      [22]. Vanderbilt, D. Phys. Rev. B, 1990, 41: 7892

    23. [23]

      [23]. Bl?觟chl, P. E. Phys. Rev. B, 1994, 50: 17953

    24. [24]

      [24]. Perdew, J. P.; Burke, K.; Ernzerhorf, M. Phys. Rev. Lett., 1996, 77: 3865

    25. [25]

      [25]. Perdew, J. P.; Burke, K.; Ernzerhorf, M. Phys. Rev. Lett., 1997, 78: 1396

    26. [26]

      [26]. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B, 1976, 13: 5188

    27. [27]

      [27]. Payne, M. C.; Teter, M. O.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys., 1992, 64: 1045

    28. [28]

      [28]. Davis, H.; Hannon, J.; Ray, K.; Plummer, E. W. Phys. Rev. Lett., 1992, 68: 2632

    29. [29]

      [29]. Feibelman, P. J. Phys. Rev. B, 1992, 46: 2532

    30. [30]

      [30]. Antonelli, A.; Khanana, S. N.; Jena, P. Surf. Sci., 1993, 289: L614

    31. [31]

      [31]. Pohl, K.; Cho, J. H.; Terakura, K.; Scheffler, M.; Plummer, E. W. Phys. Rev. Lett., 1998, 80: 2853

    32. [32]

      [32]. Holzwarth, N. A. W.; Zeng, Y. Phys. Rev. B, 1995, 51: 13653

    33. [33]

      [33]. Song, H. Z.; Zhang, P.; Zhao, X. G. Acta Phys. Sin., 2007, 56(1):465. [宋红州, 张 平, 赵宪庚. 物理学报, 2007, 56(1): 465]

    34. [34]

      [34]. Bernath, P. F.; Shayesteh, A.; Tereszchuk, K.; Colin, R. Science, 2002, 297:132


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(1188)
  • Abstract views(3358)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return