Citation: DUAN Gui-Hua, GAO Hong-Ze, WANG Li-Juan, ZHANG Hou-Yu, MA Yu-Guang. Charge Transport Properties of Anthracene Derivatives[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2292-2297. doi: 10.3866/PKU.WHXB20100813 shu

Charge Transport Properties of Anthracene Derivatives

  • Received Date: 22 February 2010
    Available Online: 11 June 2010

    Fund Project: 国家自然科学基金(20603013) (20603013)国家重点基础研究发展规划项目(973) (2009CB623605)资助 (973) (2009CB623605)

  • The molecular geometries, electronic structures, reorganization energies, and charge transfer integrals of three anthracene derivatives {2,6-bis[2-(4-pentylphenyl)vinyl]anthracene, DPPVAnt; 2,6-bis-thiophene anthracene, DTAnt; 2,6-bis[2-hexylthiophene]anthracene, DHTAnt} were investigated by density functional theory at the B3LYP/6-31G(d) level. Their mobilities at room temperature were estimated using Einstein relations and compared with the calculated mobility of anthracene. DPPVAnt is a od hole-transporting material with a hole mobility as high as 0.49 cm2·V-1·s-1; DHTAnt is an electron-transporting material with an electron mobility of about 0.12 cm2·V-1·s-1; DTAnt is a bipolar material with its hole and electron mobilities being 0.069 and 0.060 cm2·V-1·s-1, respectively. The calculated mobilities were of the same magnitude as those obtained by experimental measurements. The reorganization energies for the electrons of the three derivatives are almost the same as that for anthracene but the reorganization energies for the holes of the three derivatives are larger than that of anthracene and they follow the order: anthracene

  • 加载中
    1. [1]

      [1]. Pope, K.; Swenberg, C. E. Electronic processes in organic crystals and polymers. 2nd ed. New York: Oxford University Press, 1999

    2. [2]

      [2]. Silinsh, E. A.; Capek, V. Organic molecular crystals: interaction, localtion, and transport phenomena. New York: AIP Press, 1994

    3. [3]

      [3]. Gershenson, M. E.; Podzorov, V.; Morpur , A. F. Rev. Mod. Phys., 2006, 78: 973

    4. [4]

      [4]. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, V.; Silbey, R.; Bredas, J. L. Chem. Rev., 2007, 107: 926

    5. [5]

      [5]. Shirota, Y.; Kageyama, H. Chem. Rev., 2007, 107: 953

    6. [6]

      [6]. Klauk, K.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W. J. Appl. Phys., 2002, 92: 5259

    7. [7]

      [7]. Meng, H.; Sun, F. P.; ldfinger, M. B.; Jaycox, G. D.; Li, Z. G.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc., 2005, 127: 2406

    8. [8]

      [8]. Meng, H.; Sun, F. P.; ldfinger, M. B.; Gao, F.; Londono, D. J.; Marshal, W. J.; Blackman, G. S.; Dobbs, K. D.; Keys, D. E. J. Am. Chem. Soc., 2006, 128: 9304

    9. [9]

      [9]. Deng, W. Q.; ddard III, W. A. J. Phys. Chem. B, 2004, 108: 8614

    10. [10]

      [10]. Kukhta, A. V.; Kukhta, I. N.; Kukhta, N. A.; Neyra, O. L.; Meza, E. J. Phys. B-At. Mol. Opt. Phys., 2008, 41: 205701

    11. [11]

      [11]. Yang, X. D.; Wang, L. J.; Wang, C. L.; Long, W.; Shuai, Z. G. Chem. Mater., 2008, 20: 3205

    12. [12]

      [12]. Wang, C. L.; Wang, F. H.; Yang, X. D.; Li, Q. K.; Shuai, Z. G. Organic Electrons, 2008, 9: 635

    13. [13]

      [13]. Marcus, R. A. Rev. Mod. Phys., 1993, 65: 599

    14. [14]

      [14]. Marcus, R. A. J. Chem. Phys., 1965, 43: 679

    15. [15]

      [15]. Newton, M. D.; Sutin, N. Annu. Rev. Phys. Chem., 1984, 35: 437

    16. [16]

      [16]. Siders, P.; Marcus, R. A. J. Am. Chem. Soc., 1981, 103: 748

    17. [17]

      [17]. Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc., 1980, 102: 5798

    18. [18]

      [18]. Vilfan, I. Physica Status Solidi B-Basic Research, 1973, 59: 351

    19. [19]

      [19]. Norton, J. E.; Bredas, J. L. J. Am. Chem. Soc., 2008, 130: 12377

    20. [20]

      [20]. Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc., 2005, 127: 16866

    21. [21]

      [21]. Lin, B. C.; Cheng, C. P.; You, Z. Q.; Hsu, C. P. J. Am. Chem. Soc., 2005, 127: 66

    22. [22]

      [22]. Cornil, J.; Beljonne, D.; Calbert, J. P.; Brédas, J. L. Adv. Mater., 2001, 13: 1053

    23. [23]

      [23]. Yang, X. D.; Li, Q.; Shuai, Z. G. Nanotechnology, 2007, 18: 424029

    24. [24]

      [24]. Troisi, A.; Orlandi, G. Chem. Phys. Lett., 2001, 344: 509

    25. [25]

      [25]. Yin, S. W.; Yi, Y. P.; Li, Q. X.; Yu, G.; Liu, Y. Q.; Shuai, Z. G. J. Phys. Chem. A, 2006, 110: 7138

    26. [26]

      [26]. Gao, H. Z.; Qin, C. S.; Zhang, H. Y.; Wu, S. Y.; Su, Z. M.; Wang, Y. J. Phys. Chem. A, 2008, 112: 9097

    27. [27]

      [27]. Liang, C.; Newton, M. D. J. Phys. Chem., 1992, 97: 3199

    28. [28]

      [28]. Do nzdze, R. R.; Kuznetsov, A. M.; Vorotyntsev, M. A. Physica Status Solidi B-Basic Research, 1972, 54: 425

    29. [29]

      [29]. Newton, M. D. Chem. Rev., 1991, 91: 767

    30. [30]

      [30]. Larsson, S. J. Am. Chem. Soc., 1981, 103: 4034

    31. [31]

      [31]. L?觟wdin, P. O. J. Mol. Spectrosc., 1963, 10: 12

    32. [32]

      [32]. Siddarth, P.; Marcus, R. A. J. Phys. Chem., 1990, 94: 2985

    33. [33]

      [33]. Hush, N. S. Electrochim. Acta, 1968, 13: 1005

    34. [34]

      [34]. Creutz, C.; Newton, M. D. J. Photoch. Photobio. A, 1994, 82: 47

    35. [35]

      [35]. Cave, R. J.; Newton, M. D. J. Chem. Phys., 1997, 106: 9213

    36. [36]

      [36]. Cave, R. J.; Newton, M. D. Chem. Phys. Lett., 1996, 249: 15

    37. [37]

      [37]. Kryachko, E. S. J. Phys. Chem. A, 1999, 103: 4368

    38. [38]

      [38]. Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136: B864

    39. [39]

      [39]. Kohn, W.; Sham, L. J. Phys. Rev., 1965, 140: A1133

    40. [40]

      [40]. Becke, A. D. J. Chem. Phys., 1993, 98: 5648

    41. [41]

      [41]. Lee, C.; Yang, W. T.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    42. [42]

      [42]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09. Revision A.02. Wallingford, CT: Gaussian Inc., 2009

    43. [43]

      [43]. Liao, Y.; Su, Z. M.; Chen, Y. G.; Kan, Y. H.; Duan, H. X.; Qiu, Y. Q.; Wang, R. S. Chem. J. Chin. Univ., 2003, 24:477. [廖 奕, 苏忠民, 陈亚光, 阚玉和, 段红霞, 仇永清, 王荣顺. 高等学校化学学报, 2003, 24: 477]

    44. [44]

      [44]. Shuai, Z. G.; Shao, J. S. Theretical chemistry: principles and applications. Beijing: Science Press,2008. [帅志刚, 邵久书. 理论化学: 原理和应用. 北京: 科学出版社, 2008]

    45. [45]

      [45]. Silinsh, E. A.; Capek, V. Organic molecular crystal: interaction, localization and transport phenomena. New York: AIP Press, 1994: 332-333

    46. [46]

      [46]. Stefan, T. B.; Marta, M. T.; Peter, H.; Concepcioó, R. J. Am. Chem. Soc., 2004, 126: 6544

    47. [47]

      [47]. Brock, C. P.; Dunitz, J. D. Acta Crystallogr. Sect. B-Struct. Sci., 1990, 46: 795


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    8. [8]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    12. [12]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    20. [20]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

Metrics
  • PDF Downloads(1372)
  • Abstract views(3551)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return