Citation: SUN Wen-Li, XU Jun, LU Wen-Qi. Chemical Structure and Growth Mechanism of a-SixC1-x:H Films Prepared by Plasma Enhanced Magnetron Sputtering[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2311-2316. doi: 10.3866/PKU.WHXB20100810 shu

Chemical Structure and Growth Mechanism of a-SixC1-x:H Films Prepared by Plasma Enhanced Magnetron Sputtering

  • Received Date: 18 January 2010
    Available Online: 11 June 2010

    Fund Project: 国家自然科学基金(60576022, 50572012)资助项目 (60576022, 50572012)

  • Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by microwave electron cyclotron resonance (MW-ECR) plasma enhanced unbalance magnetron sputtering with a silicon target and CH4 as Si and C sources, respectively. The influence of CH4 flow rate and the deposition temperature on the chemical structure, stoichiometry, and hardness were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and nano-indentation. The results indicated that, as the CH4 flow rate increased from 5 to 45 cm3·min-1 (standard state), the amount of Si—CH2 groups and C—H groups increased constantly, but the number of Si—H groups did not change. The atomic concentration of C increases from 28% to 76% while Si decreases from 62% to 19%. The amount of Si—H and C—H groups in the deposited films decreases dramatically while the Si—C bonds and the hardness of the resultant films increase with an increase in deposition temperature at a constant CH4 flow rate. The atomic concentrations of Si and C remain almost constant at about 52% and 43%, respectively. The hardness of the deposited films with a constant CH4 flow rate of 15 cm3·min-1 increases to 29.7 GPa at a deposition temperature of 600 ℃. We propose a growth mechanism for the a-Si1-xCx:H films at room temperature (25 ℃) and at high temperature based on the characterization results.

  • 加载中
    1. [1]

      [1] Tesser, L. R.; Solomom, I. Phys. Rev. B, 1995, 52: 10962

    2. [2]

      [2] Wang, Y.; Yue, R. F.; Li, G. H.; Han, H. X.; Liao, X. B. Appl. Surf. Sci., 2001, 180: 87

    3. [3]

      [3] Yu, W.; Lu, W. B.; Han, L.; Fu, G. S. J. Phys. D-Appl. Phys., 2004, 37: 3304

    4. [4]

      [4] Tsai, H. K.; Lee, S. C. Appl. Phys. Lett., 1988, 52: 275

    5. [5]

      [5] Giorgis, F.; Ambrosone, G.; Coscia, U.; Ferrero, S.; Mandracci, P.; Pirri, C. F. Appl. Surf. Sci., 2001, 184: 204

    6. [6]

      [6] Chu, V.; Conde, J. P.; Jare , J.; Brogueira, P.; Rodriguez, J.; Barradas, N.; Soares, J. C. J. Appl. Phys., 1995, 78: 3164

    7. [7]

      [7] Trusso, S.; Barreca, F.; Neri, F. J. Appl. Phys., 2002, 92: 2485

    8. [8]

      [8] Sha, Z. D.; Wu, X. M.; Zhuge, L. J. Phys. Lett. A, 2005, 346: 186

    9. [9]

      [9] Song, D. Y.; Cho, E. C.; Conibeer, G.; Huang, Y. D.; Flynn, C.; Green, M. A. J. Appl. Phys., 2008, 103: 083544

    10. [10]

      [10] Timmons, A.; Todd, A. D. W.; Mead, S. D.; Carey, G. H.; Sanderson, R. J.; Mar, R. E.; Dahn, J. R. J. Electrochem. Soc., 2007, 154: A865

    11. [11]

      [11] Dimova-Malinovska, D. Vaccum, 2000, 58:183

    12. [12]

      [12] Raja palan, T.; Wang, X.; Lahlouh, B.; Ramkumar, C.; Dutta, P.; Gan padhyay, S. J. Appl. Phys., 2003, 94: 5252

    13. [13]

      [13] Kerdiles, S.; Berthelot, A.; urbilleau, F.; Rizk, R. Appl. Phys. Lett., 2000, 76: 2373

    14. [14]

      [14] Ding, W. Y.; Xu, J.; Li, Y. Q.; Piao, Y.; Gao, P.; Deng, X. L.; Dong, C. Acta Phys. Sin., 2006, 55: 1363 [丁万昱, 徐〓军, 李艳琴, 朴〓勇, 高〓鹏, 邓新绿, 董〓闯. 物理学报, 2006, 55: 1363]

    15. [15]

      [15] Xu, J. MW-ECR plasma enhanced unbalance magnetron sputtering and carbon nitride films preparation [D]. Dalian: Dalian University of Technology, 2002 [徐〓军. 微波-ECR等离子体增强非平衡磁控溅射技术及CN薄膜的制备研究[D]. 大连: 大连理工大学, 2002]

    16. [16]

      [16] Jean, A.; Chaker, M.; Diawara, Y.; Leung, P. K.; Gat, E.; Mercier, P. P.; Pépin, H.; Gujrathi, S.; Ross, G. G.; Kieffer, J. C. J. Appl. Phys., 1992, 72: 3110

    17. [17]

      [17] Mastelaro, V.; Flank, A. M.; Fantini, M. C. A.; Bittencourt, D. R. S.; Carre?觡o, M. N. P.; Pereyra, I. J. Appl. Phys., 1996, 79: 1324

    18. [18]

      [18] Pereyra, I.; Carre?觡o, M. N.; Tabacnicks, M. H.; Prado, R. J.; Fantini, M. C. A. J. Appl. Phys., 1998, 84: 2371

    19. [19]

      [19] Rinnert, H.; Vergnat, M.; Marchal, G.; Burneau, A. Appl. Phys. Lett., 1998, 72: 3157

    20. [20]

      [20] Choi, W. K.; Ong, T. Y.; Tan, L. S.; Loh, F. C.; Tan, K. L. J. Appl. Phys., 1998, 83: 4968

    21. [21]

      [21] Solomon, I.; Schmidt, M. P.; Sénémaud, C.; Khodja, M. D. Phys. Rev. B, 1988, 38: 13263

    22. [22]

      [22] Lee, W. Y. J. Appl. Phys., 1980, 51: 3365

    23. [23]

      [23] Lee, R. C.; Aita, C. R.; Tran, N. C. J. Vac. Sci. Technol. A, 1991, 9: 1351

    24. [24]

      [24] Peng, X. F.; Song, L. X.; Le, J.; Hu, X. F. J. Vac. Sci. Technol. B, 2002, 20: 159

    25. [25]

      [25] Pierson, H. O. Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. New Jersey, USA: Noyes Publications, 1996: 137-139


  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    7. [7]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    8. [8]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    11. [11]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

Metrics
  • PDF Downloads(1443)
  • Abstract views(2586)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return