Citation: YANG Su-Xia, LI Yuan, LIU Zhi-Ping, YANG Shu-Qin, HAN Shu-Min. Effect of Partial Substitution of Cu by Fe on the Phase Structure and Electrochemical Property of Low-Co AB5 Type Hydrogen Storage Alloys[J]. Acta Physico-Chimica Sinica, ;2010, 26(08): 2144-2150. doi: 10.3866/PKU.WHXB20100647 shu

Effect of Partial Substitution of Cu by Fe on the Phase Structure and Electrochemical Property of Low-Co AB5 Type Hydrogen Storage Alloys

  • Received Date: 16 January 2010
    Available Online: 18 May 2010

    Fund Project: 国家自然科学基金(20673093)资助项目 (20673093)

  • To obtain low-Co AB5 type hydrogen storage alloys with high discharge capacity and od cycling stability, the effects of substituting Cu with Fe on the phase structure and electrochemical performance of low-Co AB5 type hydrogen storage alloys were investigated in detail. A series of low-Co type LaNi3.55Mn0.35Co0.20Al0.20Cu0.85-xFex (x= 0.10, 0.20, 0.25, 0.40, 0.60) hydrogen storage alloys containin Cu and Fe were prepared by vacuum induction melting. X-ray diffraction (XRD) indicates that the alloys consist of a single LaNi5 phase with a hexa nal CaCu5 structure and the bulk phase structure of the alloy is not changed by the partial substitution of Fe for Cu. The parameters a, c, and the cell volume (V) increase with increasing Fe content. Electrochemical tests show that the maximum discharge capacity and the high rate dischargeability decrease but that the cycling stability of the alloy electrodes enhances significantly with increasing x. The capacity retention of the alloy electrodes at the 200th cycle (S200) increases from 77.6% (x=0.10) to 89.9% (x=0.60). Substituting Cu with Fe enhances the cycle stability of the alloys because of an increase in cell volume which results in a lower expansion rate and a better anti-pulverization capability.

  • 加载中
    1. [1]

      [1]. Zhao, D. J.; Ma, S. Y. Metallic Functional Materials, 2008, 15(2):41. [赵东江, 马松艳. 金属功能材料, 2008, 15(2): 41]

    2. [2]

      [2]. Wei, X. D.; Liu, Y. N.; Yu, G.; Zhu, J. W. J. Alloy. Compd., 2006, 414: 253

    3. [3]

      [3]. Huang, Y. X.; Ye, H.; Zhang, H. J. Alloy. Compd., 2002, 330-332: 831

    4. [4]

      [4]. Lei, Y. Q.; Zhang, S. K.; Lü, J. L.; Chen, L. X.; Wang, Q. D.; Wu, F. J. Alloy. Compd., 2002, 330-332: 861

    5. [5]

      [5]. Wang, G. Q.; Zhang, Y. H.; Zhao, D. L.; Han, X. Y.; Guo. S. H.; Wang, X. L. Metallic Functional Materials, 2006, 13(1): 4 [王国清, 张羊换, 赵栋梁, 韩晓英, 郭世海, 王新林. 金属功能材料, 2006, 13(1): 4]

    6. [6]

      [6]. Wei, X. D.; Liu, S. S.; Dong, H.; Zhang, H.; Liu, S. S.; Zhu, J. W.; Yu, G. Electrochim. Acta, 2007, 52: 2423

    7. [7]

      [7]. Huang, K. L.; Yang, G. L.; Tan, F. P.; Xu, G. Y. Rare Metals and Cemented Carbides, 2007, 35(4):6. [黄可龙, 杨国利, 谭飞鹏, 许谷芽. 稀有金属与硬质合金, 2007, 35(4): 6]

    8. [8]

      [8]. Tang, W.; Gai, Y.; Zheng, H. J. Alloy. Compd., 1995, 224: 292

    9. [9]

      [9]. Li, P.; Wang, X. L.; Lin, Y. F.; Li, R.; Wu, J. M. Journal of the Chinese Rare Earth Society, 2003, 21(1):61. [李 平, 王新林, 林玉芳, 李 蓉, 吴建民. 中国稀土学报, 2003, 21(1): 61]

    10. [10]

      [10]. Züttel, A.; Chartouni, D.; Gross, K.; Spatz, P.; Bchler, M.; Lichtenberg, F.; Folzer, A.; Adkins, N. J. E. J. Alloy. Compd., 1997, 253: 626

    11. [11]

      [11]. Zhang, Y. H.; Wang, G. Q.; Dong, X. P.; Guo. S. H.; Wang, X. L. J. Power Sources, 2004, 137: 309

    12. [12]

      [12]. Yu, L. M.; Jiang, W. Q.; Fu, Z. Z. Chinese Journal of Rare Metals, 2005, 29(6):856. [于丽敏, 蒋文全, 傅钟臻. 稀有金属, 2005, 29(6): 856]

    13. [13]

      [13]. Li, Y.; Han, D.; Han, S. M.; Zhu, X. L.; Hu. L.; Zhang, Z.; Liu, Y. W. Int. J. Hydrogen Energy, 2009, 34: 1399

    14. [14]

      [14]. Ye, H.; Zhang, H.; Cheng, J. X.; Huang, T. S. J. Alloy. Compd., 2000, 308: 163

    15. [15]

      [15]. Li, S. L.; Cheng, H. H.; Deng, X. X.; Lü, M. Q.; Chen, D. M.; Yang, K. Rare Metal Materials and Engineering, 2008, 37(4): 599[李慎兰, 程宏辉, 邓小霞, 吕曼祺, 陈德敏, 杨 柯. 稀有金属材料与工程, 2008, 37(4): 599]

    16. [16]

      [16]. Khaldi, C.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guégan, A. J. Alloy. Compd., 2003, 360: 266

    17. [17]

      [17]. Ben-Moussa, M.; Abdellaoui, M.; Mathlouthi, H.; Lamloumi, J.; Percheron-Gegan, A. J. Alloy. Compd., 2008, 458: 410

    18. [18]

      [18]. Sakai, T.; Hazama, T.; Miyamura, H.; Kuriyama, N. J. Less- Common Met., 1991, 172-174: 1175

    19. [19]

      [19]. Pan, H. G.; Li, R.; Liu, Y. F.; Gao, M. X.; Miao, H.; Lei, Y. Q.; Wang, Q. D. J. Alloy. Compd., 2008, 463: 189

    20. [20]

      [20]. Iwakura, C.; Fukuda, K.; Senoh, H.; Inoue, H.; Matsuoka, M.; Yamamoto, Y. Electrochim. Acta, 1998, 43: 2041

    21. [21]

      [21]. Hu, D. Z.; Chen, S.; Wang, Z. D.; Zhao, S. H. Acta Phys. -Chim. Sin., 2006, 22(9):1151. [胡道中, 陈 实, 王子冬, 赵淑红. 物理化学学报, 2006, 22(9): 1151]


  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(1305)
  • Abstract views(2666)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return