Citation: Sha Guo-He, Zhang Cun-Hao. Quantum Interference Effect in Collision-induced Intramolecular Energy Transfer within Singlet-triplet Mixed States[J]. Acta Physico-Chimica Sinica, ;2004, 20(08S): 1010-1016. doi: 10.3866/PKU.WHXB200408zk18 shu

Quantum Interference Effect in Collision-induced Intramolecular Energy Transfer within Singlet-triplet Mixed States

  • Received Date: 23 March 2004
    Available Online: 15 August 2004

  • The principle of wave-particle duality of quantum mechanics ascertains that any microscopic particle must also exhibit wave properties. The matter wave, or de Broglie wave, was first evidenced by Davisson and Germer in 1927 in the electron diffraction by crystals. In recent years, numerous fascinating examples of the quantum interference effect (QIE) have been discovered in the molecular systems in their excitation, dissociation and ionization by photons as well as in collision processes. Our group was the first to obtain the experimental evidence of QIE in a collision, specifically for the singlet-triplet mixed state of a diatomic species, and to derive an explicit expression for its energy transfer cross-section. In this expression, the interference phase angle (θST) that describes the phase angle difference between singlet and triplet energy transfer channels is defined and experimentally measured for CO(A 1Π,v=0/e 3Σ-,v =1)-M collision system with M= rare gases (He, Ne, Ar), homonuclear diatomics (H2, N2, O2) and heteronuclear diatomics (HCl) via the optical-optical double resonance multiphoton ionization (OODR-MPI) technique. We have also observed QIE in Na2(A 1Σu+, v=8/b 3Π0u, v =14)-Na collision. More recently, we have carried out quantum scattering calculations of the interference angle based on the first order Born approximation of time dependent perturbation theory. For atom-diatom collision,the anisotropic Lennard-Jones interaction potential was adopted, and for polar diatom-diatom collision, the long-range dipole-dipole interaction proportional to R-3 was shown to be a proper potential for the calculation. All the calculated θST at T=77,253 and 470 K for CO(A 1Π,v=0/e 3Σ-, v =1)-M, for M=He(θST=58°~65°), Ne(66°~69°), Ar(72°~90°) and HCl(101°~110°), are in od agreement with the experiments. Our calculated differential θST are in the range of 48°~70° for CO-He and 93°~112° for CO-HCl collision for all v and b values that are physically significant. These values are close to those experimental θST′s obtained in the gas cell, implying that the “average effect” is not serious. The calculation also gives an effective collision time of 0.3 ps for CO-He and 1.5 ps for CO-HCl collision, which explains why the experimental θST for the former is much smaller than that of the latter. These results show that θST should provide important information on the singlet-triplet mixed state intermolecular potential, which is difficult to obtain by other experimental or theoretical methods.
  • 加载中
  • 加载中
    1. [1]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    4. [4]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    5. [5]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    13. [13]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    17. [17]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    18. [18]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    19. [19]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(2474)
  • Abstract views(3061)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return